Search results

1 – 10 of 279
Open Access
Article
Publication date: 8 August 2022

Gopal Shruthi and Murugan Suvinthra

The purpose of this paper is to study large deviations for the solution processes of a stochastic equation incorporated with the effects of nonlocal condition.

Abstract

Purpose

The purpose of this paper is to study large deviations for the solution processes of a stochastic equation incorporated with the effects of nonlocal condition.

Design/methodology/approach

A weak convergence approach is adopted to establish the Laplace principle, which is same as the large deviation principle in a Polish space. The sufficient condition for any family of solutions to satisfy the Laplace principle formulated by Budhiraja and Dupuis is used in this work.

Findings

Freidlin–Wentzell type large deviation principle holds good for the solution processes of the stochastic functional integral equation with nonlocal condition.

Originality/value

The asymptotic exponential decay rate of the solution processes of the considered equation towards its deterministic counterpart can be estimated using the established results.

Details

Arab Journal of Mathematical Sciences, vol. 30 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 23 November 2023

Diego Gabriel Metz, Roberto Dalledone Machado, Marcos Arndt and Carlos Eduardo Rossigali

Realistic composite vehicles with 2, 3, 5 and 9 axles, consisting of a truck with one or two trailers, are addressed in this paper by computational models for vehicle–bridge…

Abstract

Purpose

Realistic composite vehicles with 2, 3, 5 and 9 axles, consisting of a truck with one or two trailers, are addressed in this paper by computational models for vehicle–bridge interaction analysis.

Design/methodology/approach

The vehicle–bridge interaction (VBI) models are formed by sets of 2-D rigid blocks interconnected by mass, damping and stiffness elements to simulate their suspension system. The passage of the vehicles is performed at different speeds. Several rolling surface profiles are admitted, considering the maintenance grade of the pavement. The spectral density functions are generated from an experimental database to form the longitudinal surface irregularity profiles. A computational code written in Phyton based on the finite element method was developed considering the Euler–Bernoulli beam model.

Findings

Several models of composite heavy vehicles are presented as manufactured and currently travel on major roads. Dynamic amplification factors are presented for each type of composite vehicle.

Research limitations/implications

The VBI models for compound heavy vehicles are 2-D.

Social implications

This work contributes to improving the safety and lifetime of the bridges, as well as the stability and comfort of the vehicles when passing over a bridge.

Originality/value

The structural response of the bridge is affected by the type and size of the compound vehicles, their speed and the conservative grade of the pavement. Moreover, one axle produces vibrations that can be superposed by the vibrations of the other axles. This effect can generate not usual dynamic responses.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 September 2023

Vicente-Segundo Ruiz-Jacinto, Karina-Silvana Gutiérrez-Valverde, Abrahan-Pablo Aslla-Quispe, José-Manuel Burga-Falla, Aldo Alarcón-Sucasaca and Yersi-Luis Huamán-Romaní

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite…

Abstract

Purpose

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.

Design/methodology/approach

This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.

Findings

The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.

Originality/value

The authors confirm the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 November 2023

Shun-Peng Zhu, Xiaopeng Niu, Behrooz Keshtegar, Changqi Luo and Mansour Bagheri

The multisource uncertainties, including material dispersion, load fluctuation and geometrical tolerance, have crucial effects on fatigue performance of turbine bladed disks. In…

Abstract

Purpose

The multisource uncertainties, including material dispersion, load fluctuation and geometrical tolerance, have crucial effects on fatigue performance of turbine bladed disks. In view of the aim of this paper, it is essential to develop an advanced approach to efficiently quantify their influences and evaluate the fatigue life of turbine bladed disks.

Design/methodology/approach

In this study, a novel combined machine learning strategy is performed to fatigue assessment of turbine bladed disks. Proposed model consists of two modeling phases in terms of response surface method (RSM) and support vector regression (SVR), namely RSM-SVR. Two different input sets obtained from basic variables were used as the inputs of RSM, then the predicted results by RSM in first phase is used as inputs of SVR model by using a group data-handling strategy. By this way, the nonlinear flexibility of SVR inputs is improved and RSM-SVR model presents the high-tendency and efficiency characteristics.

Findings

The accuracy and tendency of the RSM-SVR model, applied to the fatigue life estimation of turbine bladed disks, are validated. The results indicate that the proposed model is capable of accurately simulating the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction strategy compared to RSM and SVR for fatigue analysis of complex structures.

Originality/value

The results indicate that the proposed model is capable of accurately simulate the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction compared to RSM and SVRE for fatigue analysis of turbine bladed disk.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 January 2024

Zhi Li, YiYuan Du, Zhiming Xu, Xuqian Qiao and Hong Zhang

The purpose of this study is to investigate the influence of surface texture on the subsurface characteristics of contact interfaces under elastohydrodynamic lubrication…

65

Abstract

Purpose

The purpose of this study is to investigate the influence of surface texture on the subsurface characteristics of contact interfaces under elastohydrodynamic lubrication condition. As a typical contact form of gears and bearings, the optimization of friction characteristics at the elastohydrodynamic lubrication (EHL) interface has attracted the attention of scholars. Laser surface texturing is a feasible optimization solution, but there have been concerns about whether the surface texture of high-pair parts will affect their fatigue life.

Design/methodology/approach

To examine the impact of texture preparation on the subsurface characteristics of high-pair interfaces under EHL conditions, a point contact EHL model is developed that takes into account the effect of textured surface topography. The pressure and thickness of the oil film are calculated as input parameters under different loads and entrainment velocities. The finite element method is used to simulate the impact of textures with varying diameters, densities and depths on the subsurface characteristics of the elastohydrodynamic interface. According to ISO 25178, analyze the relationship between 3D topography parameters and subsurface characteristics and study the trend of friction characteristics and subsurface characteristics based on the results of the ball on disc friction tests.

Findings

The outcomes suggest that under different rotational velocity and load conditions, the textured surfaces exhibit improved friction reduction effects; however, the creation of textures can result in significant subsurface plastic deformation and local peeling. The existence of texture makes the larger stress zone in the subsurface layer closer to the surface, leading to fatigue failure near the surface. Reasonable design parameters can help enhance the attributes of the subsurface. A smaller Sa and a Str greater than 0.5 can achieve ideal subsurface properties on the textured surface.

Originality/value

This paper investigates the influence of surface texture on the friction and subsurface characteristics of EHL interfaces and analyzes the impact of surface texture on interface contact performance while achieving lubrication improvement functional characteristics. The results provide theoretical support for the optimization design and functional regulation of surface texture in EHL interfaces.

Peer review

The peer review history for this article is https://publons.com/publon/10.1108/ILT-10-2023-0324/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 October 2023

Yaobing Wei, Yanan Li, Jianhui Liu, Gai Wang, Yanlei Guo and Xuemei Pan

In practical engineering, oil filters often work under asymmetric cyclic loading. In order to improve the prediction accuracy of fatigue life of the oil filters under asymmetric…

Abstract

Purpose

In practical engineering, oil filters often work under asymmetric cyclic loading. In order to improve the prediction accuracy of fatigue life of the oil filters under asymmetric cyclic loading, the effect of strain ratio and low cycle fatigue plastic deformation on fatigue life need to be considered. This paper aims to discuss the aforementioned objective.

Design/methodology/approach

First, strain-controlled fatigue tests with strain ratios of 0, 0.5 and −1 were carried out on the oil filter material 2A70-T6 aluminum alloy, and the test data were used to obtain strain fatigue life curves at three strain ratios. Then, based on the idea of the constant life curve method, the average value of the ratio of the strain amplitude corresponding to different strain ratios under the same partial life was defined as the strain ratio factor. Finally, the elastic-plastic factor was modified by the strain ratio factor, and a new fatigue life prediction model considering the effect of strain ratio was proposed.

Findings

The proposed model was validated, respectively, by fatigue test data of 2A70-T6 aluminum alloy, 2124-T851 aluminum alloy and oil filter and the results of the proposed model were compared with the Coffin–Manson equation, Morrow model and Smith–Watson–Topper (SWT) model, showing that the proposed model had higher applicability and accuracy.

Originality/value

In this work, a strain ratio factor is established based on the idea of the constant life curve method, and the strain ratio factor is used to modify the introduced elastic-plastic factor, and then a new fatigue life prediction model considering the influence of strain ratio and low cycle fatigue plastic deformation on material fatigue damage accumulation is proposed. The results show that the prediction results of the proposed model are in good agreement with the experimental data, and the proposed model has good fatigue life prediction ability considering the influence of strain ratio and lays a foundation for the fatigue life prediction of the oil filter.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 11 January 2024

Vahid Lotfi and Hesamedin Abdorazaghi

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time…

Abstract

Purpose

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by the FE-(FE-HE)-FE approach (referred to as exact method which employs a rigorous fluid hyper-element). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

Design/methodology/approach

In the present study, dynamic analysis of a typical concrete gravity dam–water–foundation rock system is formulated by the FE-(FE-TE)-FE approach. In this technique, dam and foundation rock are discretized by plane solid finite elements while, water domain near-field region is discretized by plane fluid finite elements. Moreover, the H-W (i.e. Hagstrom–Warburton) high-order condition is imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model.

Findings

High orders of H-W condition, such as O5-5 considered herein, generate highly accurate responses for both possible excitations under both types of full reflective and absorptive reservoir bottom conditions. It is such that transfer functions are hardly distinguishable from corresponding exact responses obtained through the FE-(FE-HE)-FE approach in time harmonic analyses. This is controlled for both low and high normalized reservoir length cases (L/H = 1 and 3). Moreover, it can be claimed that transient analysis leads practically to exact results (in numerical sense) when one is employing high order H-W truncation element. In other words, the results are not sensitive to reservoir normalized length under these circumstances.

Originality/value

Dynamic analysis of concrete gravity dam–water–foundation rock systems is formulated by a new method. The salient aspect of the technique is that it utilizes H-W high-order condition at the truncation boundary. The method is discussed for all types of excitation and reservoir bottom conditions.

Open Access
Article
Publication date: 26 April 2024

Sultan Mohammed Althahban, Mostafa Nowier, Islam El-Sagheer, Amr Abd-Elhady, Hossam Sallam and Ramy Reda

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the…

Abstract

Purpose

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the number of layers of patches, whether a single or double patch is used and how well debonding the area under the patch improves the strength of the cracked aluminum plates with different crack lengths.

Design/methodology/approach

Single-edge cracked aluminum specimens of 150 mm in length and 50 mm in width were tested using the tensile test. The cracked aluminum specimens were then repaired using GFRP patches with various configurations. A three-dimensional (3D) finite element method (FEM) was adopted to simulate the repaired cracked aluminum plates using composite patches to obtain the stress intensity factor (SIF). The numerical modeling and validation of ABAQUS software and the contour integral method for SIF calculations provide a valuable tool for further investigation and design optimization.

Findings

The width of the GFRP patches affected the efficiency of the rehabilitated cracked aluminum plate. Increasing patch width WP from 5 mm to 15 mm increases the peak load by 9.7 and 17.5%, respectively, if compared with the specimen without the patch. The efficiency of the GFRP patch in reducing the SIF increased as the number of layers increased, i.e. the maximum load was enhanced by 5%.

Originality/value

This study assessed repairing metallic structures using the chopped strand mat GFRP. Furthermore, it demonstrated the superiority of rectangular patches over semicircular ones, along with the benefit of using double patches for out-of-plane bending prevention and it emphasizes the detrimental effect of defects in the bonding area between the patch and the cracked component. This underlines the importance of proper surface preparation and bonding techniques for successful repair.

Graphical abstract

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 4 January 2024

Sofiane Talbi, Mokadem Salem, Belaïd Mechab, Tewfik Ghomari, Ahmed Allem, Belabbes Bachir Bouiadjra and Benelmaarouf Mehdi

This study provides an analysis of patch repair for cracked aircraft structures. Delamination is a type of damage that affects the patch's behavior. The purpose of this study is…

Abstract

Purpose

This study provides an analysis of patch repair for cracked aircraft structures. Delamination is a type of damage that affects the patch's behavior. The purpose of this study is to assess the influence of delamination on repair performance.

Design/methodology/approach

An analytical and numerical study using the finite element method was conducted for a cracked plate repaired with a patch containing a pre-existing delamination defect. The method for defining the contact pair surfaces and modeling the delamination interaction within the patch interface is specified using the virtual crack closure technique (VCCT) approach.

Findings

The efficiency of the repair is measured in terms of the J-integral. The effects of delamination initiation, mechanical loading, crack length and patch stacking sequences are presented. It is noted that in mode I, delamination propagation is only significant at node A. The numerical results are in good agreement with those of the analytical solution found in the literature. It is observed that the patch's behavior is strongly dependent on loading, crack size and stacking sequences in terms of reducing the structure's lifespan, especially in the presence of delamination.

Originality/value

The numerical modeling presented by the VCCT approach is highly valuable for studying delamination evolution. The influence of loading, crack size and stacking sequences on repair performance is discussed in this work.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 279