Search results

1 – 4 of 4
Article
Publication date: 2 January 2018

Hasan Kamliya Jawahar, Yujing Lin and Mark Savill

The purpose of this paper is to investigate airfoil self-noise generation and propagation by using a hybrid method based on the large-eddy simulation (LES) approach and Curle’s

Abstract

Purpose

The purpose of this paper is to investigate airfoil self-noise generation and propagation by using a hybrid method based on the large-eddy simulation (LES) approach and Curle’s acoustic analogy as implemented in OpenFOAM.

Design/methodology/approach

Large-eddy simulation of near-field flow over a NACA6512-63 airfoil at zero angle of attack with a boundary layer trip at Rec = 1.9 × 105 has been carried out using the OpenFOAM® computational fluid dynamics (CFD) code. Calculated flow results are compared with published experimental data. The LES includes the wind tunnel installation effects by using appropriate inflow boundary conditions obtained from a RANS κω SST model computation of the whole wind tunnel domain. Far-field noise prediction was achieved by an integral method based on Curle’s acoustic analogy. The predicted sound pressure levels are validated against the experimental data at various frequency ranges.

Findings

The numerical results presented in this paper show that the flow features around a NACA6512-63 airfoil have been correctly captured in OpenFOAM LES calculations. The mean surface pressure distributions and the local pressure peaks for the step trip setup agree very well with the experimental measurements. Aeroacoustic prediction using Curle’s analogy shows an overall agreement with the experimental data. The sound pressure level-frequency spectral analysis produces very similar data at low to medium frequency, whereas the experimentally observed levels are slightly over predicted at a higher frequency range.

Practical implications

This study has achieved and evaluated an alternative aeroacoustic simulation method based on the combination of LES with a simple Smagorinsky SGS model and Curle’s analogy, as implemented in the OpenFOAM CFD code. The unsteady velocity/pressure source data produced can be used for any simpler analytically based far-field noise prediction scheme.

Originality/value

A complete integration of the LES and Curle’s acoustic analogy for aeroacoustic simulations has been achieved in OpenFOAM. The capability and accuracy of the hybrid method are fully evaluated for high-camber airfoil self-noise predictions. Wind tunnel installation effects have been incorporated properly into the LES.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 October 2018

Belkallouche Abderrahmane, Tahar Rezoug and Laurent Dala

Aircraft noise is dominant for residents near airports when planes fly at low altitudes such as during departure and landing. Flaps, wings, landing gear contribute significantly…

Abstract

Purpose

Aircraft noise is dominant for residents near airports when planes fly at low altitudes such as during departure and landing. Flaps, wings, landing gear contribute significantly to the total sound emission. This paper aims to present a passive flow control (in the sense that there is no power input) to reduce the noise radiation induced by the flow over the cavity of the landing gear during take-off and landing.

Design/methodology/approach

The understanding of the noise source mechanism is normally caused by the unsteady interactions between the cavity surface and the turbulent flows as well as some studies that have shown tonal noise because of cavity resonances; this tonal noise is dependent on cavity geometry and incoming flow that lead us to use of a sinusoidal surface modification application upstream of a cavity as a passive acoustics control device in approach conditions.

Findings

It is demonstrated that the proposed surface waviness showed a potential reduction in cavity resonance and in the overall sound pressure level at the majority of the points investigated in the low Mach number. Furthermore, optimum sinusoidal amplitude and frequency were determined by the means of a two-dimensional computational fluid dynamics analysis for a cavity with a length to depth ratio of four.

Research limitations/implications

The noise control by surface waviness has not implemented in real flight test yet, as all the tests are conducted in the credible numerical simulation.

Practical implications

The application of passive control method on the cavity requires a global aerodynamic study of the air frame is a matter of ongoing debate between aerodynamicists and acousticians. The latter is aimed at the reduction of the noise, whereas the former fears a corruption of flow conditions. To balance aerodynamic performance and acoustics, the use of the surface waviness in cavity leading edge is the most optimal solution.

Social implications

The proposed leading-edge modification it has important theoretical basis and reference value for engineering application it can meet the demands of engineering practice. Particularly, to contribute to the reduce the aircraft noise adopted by the “European Visions 2020”.

Originality/value

The investigate cavity noise with and without surface waviness generation and propagation by using a hybrid approach, the computation of flow based on the large-eddy simulation method, is decoupled from the computation of sound, which can be performed during a post-processing based on Curle’s acoustic analogy as implemented in OpenFOAM.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 October 2015

Siti Ruhliah Lizarose Samion, Mohamed Sukri Mat Ali and Aminudin Abu

This paper aims to investigate the aerodynamic sound generated from flow over bluff bodies at a high Reynolds number. By taking circular and square cylinders as two representative…

Abstract

Purpose

This paper aims to investigate the aerodynamic sound generated from flow over bluff bodies at a high Reynolds number. By taking circular and square cylinders as two representative geometries for the cross-section of bluff bodies, this study aims to clarify the difference in flow formation and sound generation between the two types of bluff bodies. Furthermore, the possibility for a downstream flat plate to be used as sound cancellation passive mechanism is also discussed in this study.

Design/methodology/approach

Sound source from the near field is numerically solved by using the Unsteady Reynolds-Averaged Navier Stokes equations. While for the sound at far-field, the compact sound theory of Curle’s analogy is used.

Findings

Magnitude of the generated sound is dominant by the aerodynamic forcer fluctuations, i.e. lift and drag, where the lift fluctuation gives the strongest influence on the sound generation. The square cylinder emits 4.7 dB higher than the sound emitted from flow over the circular cylinder. This relates to the longer vortex formation length for the case of square cylinder that provides space for more vortex to dissipate. It is suggested that downstream flat plate is possible to be applied for a sound cancellation mechanism for the case of circular cylinder, but it would be more challenging for the case of square cylinder.

Practical implications

This study include implications for the development of noise reduction study especially in high-speed vehicles such as the aircrafts and high-speed trains.

Originality/value

This study identified that there is possible method for sound cancellation in flow over bluff body cases by using passive control method, even in flow at high Reynolds number.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 November 2020

Kirsten van den Heuij, Theo Goverts, Karin Neijenhuis and Martine Coene

As oral communication in higher education is vital, good classroom acoustics is needed to pass the verbal message to university students. Non-auditory factors such as academic…

Abstract

Purpose

As oral communication in higher education is vital, good classroom acoustics is needed to pass the verbal message to university students. Non-auditory factors such as academic language, a non-native educational context and a diversity of acoustic settings in different types of classrooms affect speech understanding and performance of students. The purpose of this study is to find out whether the acoustic properties of the higher educational teaching contexts meet the recommended reference levels.

Design/methodology/approach

Background noise levels and the Speech Transmission Index (STI) were assessed in 45 unoccupied university classrooms (15 lecture halls, 16 regular classrooms and 14 skills laboratories).

Findings

The findings of this study indicate that 41 classrooms surpassed the maximum reference level for background noise of 35 dB(A) and 17 exceeded the reference level of 40 dB(A). At five-meter distance facing the speaker, six classrooms indicated excellent speech intelligibility, while at more representative listening positions, none of the classrooms indicated excellent speech intelligibility. As the acoustic characteristics in a majority of the classrooms exceeded the available reference levels, speech intelligibility was likely to be insufficient.

Originality/value

This study seeks to assess the acoustics in academic classrooms against the available acoustic reference levels. Non-acoustic factors, such as academic language complexity and (non-)nativeness of the students and teaching staff, put higher cognitive demands upon listeners in higher education and need to be taken into account when using them in daily practice for regular students and students with language/hearing disabilities in particular.

Details

Journal of Applied Research in Higher Education, vol. 13 no. 4
Type: Research Article
ISSN: 2050-7003

Keywords

1 – 4 of 4