Search results

1 – 10 of 229
Article
Publication date: 16 April 2024

Chaofan Wang, Yanmin Jia and Xue Zhao

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted…

Abstract

Purpose

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic fragility analysis has an important role in seismic hazard evaluation. In this paper, the seismic fragility of sleeve connected prefabricated column is analyzed.

Design/methodology/approach

A model for predicting the seismic demand on sleeve connected prefabricated columns has been created by incorporating engineering demand parameters (EDP) and probabilities of seismic failure. The incremental dynamics analysis (IDA) curve clusters of this type of column were obtained using finite element analysis. The seismic fragility curve is obtained by regression of Exponential and Logical Function Model.

Findings

The IDA curve cluster gradually increased the dispersion after a peak ground acceleration (PGA) of 0.3 g was reached. For both columns, the relative displacement of the top of the column significantly changed after reaching 50 mm. The seismic fragility of the prefabricated column with the sleeve placed in the cap (SPCA) was inadequate.

Originality/value

The sleeve was placed in the column to overcome the seismic fragility of prefabricated columns effectively. In practical engineering, it is advisable to utilize these columns in regions susceptible to earthquakes and characterized by high seismic intensity levels in order to mitigate the risk of structural damage resulting from ground motion.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 9 April 2024

Charles A. Donnelly, Sushobhan Sen, John W. DeSantis and Julie M. Vandenbossche

The time-varying equivalent linear temperature gradient (ELTG) significantly affects the development of faulting and must therefore be accounted for in pavement design. The same…

16

Abstract

Purpose

The time-varying equivalent linear temperature gradient (ELTG) significantly affects the development of faulting and must therefore be accounted for in pavement design. The same is true for faulting of bonded concrete overlays of asphalt (BCOA) with slabs larger than 3 x 3 m. However, the evaluation of ELTG in Mechanistic-Empirical (ME) BCOA design is highly time-consuming. The use of an effective ELTG (EELTG) is an efficient alternative to calculating ELTG. In this study, a model to quickly evaluate EELTG was developed for faulting in BCOA for panels 3 m or longer in size, whose faulting is sensitive to ELTG.

Design/methodology/approach

A database of EELTG responses was generated for 144 BCOAs at 169 locations throughout the continental United States, which was used to develop a series of prediction models. Three methods were evaluated: multiple linear regression (MLR), artificial neural networks (ANNs), and multi-gene genetic programming (MGGP). The performance of each method was compared, considering both accuracy and model complexity.

Findings

It was shown that ANNs display the highest accuracy, with an R2 of 0.90 on the validation dataset. MLR and MGGP models achieved R2 of 0.73 and 0.71, respectively. However, these models consisted of far fewer free parameters as compared to the ANNs. The model comparison performed in this study highlights the need for researchers to consider the complexity of models so that their direct implementation is feasible.

Originality/value

This research produced a rapid EELTG prediction model for BCOAs that can be incorporated into the existing faulting model framework.

Article
Publication date: 5 April 2024

Kryzelle M. Atienza, Apollo E. Malabanan, Ariel Miguel M. Aragoncillo, Carmina B. Borja, Marish S. Madlangbayan and Emel Ken D. Benito

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that…

Abstract

Purpose

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that induce general corrosion. This research gap was addressed by performing a combined numerical and statistical analysis on RC beams, subjected to natural corrosion, to achieve a much better forecast.

Design/methodology/approach

Data of 42 naturally corroded beams were collected from the literature and analyzed numerically. Four constitutive models and their combinations were considered: the elastic-semi-plastic and elastic-perfectly-plastic models for steel, and two tensile models for concrete with and without the post-cracking stresses. Meanwhile, Popovics’ model was used to describe the behavior of concrete under compression. Corrosion coefficients were developed as functions of corrosion degree and beam parameters through linear regression analysis to fit the theoretical moment capacities with test data. The performance of the coefficients derived from different combinations of constitutive laws was then compared and validated.

Findings

The results showed that the highest accuracy (R2 = 0.90) was achieved when the tensile response of concrete was modeled without the residual stresses after cracking and the steel was analyzed as an elastic-perfectly-plastic material. The proposed procedure and regression model also showed reasonable agreement with experimental data, even performing better than the current models derived from accelerated tests and traditional procedures.

Originality/value

This study presents a simple but reliable approach for quantifying the capacity of RC beams under more realistic conditions than previously reported. This method is simple and requires only a few variables to be employed. Civil engineers can use it to obtain a quick and rough estimate of the structural condition of corroding RC beams.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 September 2023

Vicente-Segundo Ruiz-Jacinto, Karina-Silvana Gutiérrez-Valverde, Abrahan-Pablo Aslla-Quispe, José-Manuel Burga-Falla, Aldo Alarcón-Sucasaca and Yersi-Luis Huamán-Romaní

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite…

Abstract

Purpose

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.

Design/methodology/approach

This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.

Findings

The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.

Originality/value

The authors confirm the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 29 February 2024

Yuhan Tang, Yuedong Wang, Jiayu Liu, Boya Tian, Qi Dong, Ziwei He and Jiayi Wen

In order to extend the application of the original octagonal Goodman–Smith fatigue limit diagram, which is commonly used for the evaluation of structure fatigue stress in…

Abstract

Purpose

In order to extend the application of the original octagonal Goodman–Smith fatigue limit diagram, which is commonly used for the evaluation of structure fatigue stress in engineering, a modification of it is proposed for the structure made of S355 steel (commonly used in high-speed electric multiple units (EMUs) bogie frame).

Design/methodology/approach

The modification is made based on Deutscher Verband für Schweißen und verwandte Verfahren e. V. (DVS) 1612 standard and the γ-P-S-N curve, with consideration of the fatigue evaluation requirements of different survival rates and confidence levels. The verification of the modification is performed for three welded joints and for the comparison with the experimental data.

Findings

The results indicate that the design survival rate, the design safety margin and the fatigue stress evaluation of welded joint types are all improved by using the modified diagram.

Originality/value

There are relatively few studies on modifying octagonal Goodman–Smith fatigue limit diagram. In this paper, a modified diagram is proposed and applied in order to ensure the safety and durability of key welded structures of rail vehicles.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 September 2023

Suzan Alaswad and Sinan Salman

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively…

Abstract

Purpose

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.

Design/methodology/approach

This paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.

Findings

When the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.

Originality/value

Most of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 April 2024

Derek L. Nazareth, Jae Choi and Thomas Ngo-Ye

This paper aims to examine the conditions under which small and medium enterprises (SMEs) invest in security services when they migrate their e-commerce applications to the cloud…

Abstract

Purpose

This paper aims to examine the conditions under which small and medium enterprises (SMEs) invest in security services when they migrate their e-commerce applications to the cloud environment. Using a risk management perspective, the paper assesses the impact of security service pricing, security incident prevalence and virulence to estimate SME security spending at the market level and draw out implications for SMEs and security service providers.

Design/methodology/approach

Security risks are inherently characterized by uncertainty. This study uses a Monte Carlo approach to understand the role of uncertainty in the decision to adopt security services. A model relating key security constructs is assembled based on key constructs from the domain. By manipulating security service costs and security incident types, the model estimates the market-level adoption of services, security incidents and damages incurred, along with measures of their relative dispersion.

Findings

Three key findings emerge from this study. First, adoption of services and protection is higher when tiered security services are provided, indicating that SMEs prefer to choose their security services rather than accept uniformly priced products. Second, SMEs are considered price-sensitive, resulting in a maximum level of spending in the market. Third, results indicate that security incidents and damages can be much higher than the mean in some cases, and this should serve as a cautionary note to SMEs.

Originality/value

Security spending has been modeled at the firm level. Adopting a market-level perspective represents a novel contribution. Additionally, the Monte Carlo approach provides managers with tangible measures of uncertainty, affording additional information and insight when making security service adoption decisions.

Details

Journal of Systems and Information Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1328-7265

Keywords

1 – 10 of 229