Search results

11 – 20 of 426
Article
Publication date: 7 January 2019

Balamurali Gunji, Deepak B.B.V.L., Saraswathi M.B.L. and Umamaheswara Rao Mogili

The purpose of this paper is to obtain an optimal mobile robot path planning by the hybrid algorithm, which is developed by two nature inspired meta-heuristic algorithms, namely…

Abstract

Purpose

The purpose of this paper is to obtain an optimal mobile robot path planning by the hybrid algorithm, which is developed by two nature inspired meta-heuristic algorithms, namely, cuckoo-search and bat algorithm (BA) in an unknown or partially known environment. The cuckoo-search algorithm is based on the parasitic behavior of the cuckoo, and the BA is based on the echolocation behavior of the bats.

Design/methodology/approach

The developed algorithm starts by sensing the obstacles in the environment using ultrasonic sensor. If there are any obstacles in the path, the authors apply the developed algorithm to find the optimal path otherwise reach the target point directly through diagonal distance.

Findings

The developed algorithm is implemented in MATLAB for the simulation to test the efficiency of the algorithm for different environments. The same path is considered to implement the experiment in the real-world environment. The ARDUINO microcontroller along with the ultrasonic sensor is considered to obtain the path length and time of travel of the robot to reach the goal point.

Originality/value

In this paper, a new hybrid algorithm has been developed to find the optimal path of the mobile robot using cuckoo search and BAs. The developed algorithm is tested with the real-world environment using the mobile robot.

Details

International Journal of Intelligent Unmanned Systems, vol. 7 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 17 June 2021

Venkatesh Chapala and Polaiah Bojja

Detecting cancer from the computed tomography (CT)images of lung nodules is very challenging for radiologists. Early detection of cancer helps to provide better treatment in…

Abstract

Purpose

Detecting cancer from the computed tomography (CT)images of lung nodules is very challenging for radiologists. Early detection of cancer helps to provide better treatment in advance and to enhance the recovery rate. Although a lot of research is being carried out to process clinical images, it still requires improvement to attain high reliability and accuracy. The main purpose of this paper is to achieve high accuracy in detecting and classifying the lung cancer and assisting the radiologists to detect cancer by using CT images. The CT images are collected from health-care centres and remote places through Internet of Things (IoT)-enabled platform and the image processing is carried out in the cloud servers.

Design/methodology/approach

IoT-based lung cancer detection is proposed to access the lung CT images from any remote place and to provide high accuracy in image processing. Here, the exact separation of lung nodule is performed by Otsu thresholding segmentation with the help of optimal characteristics and cuckoo search algorithm. The important features of the lung nodules are extracted by local binary pattern. From the extracted features, support vector machine (SVM) classifier is trained to recognize whether the lung nodule is malicious or non-malicious.

Findings

The proposed framework achieves 99.59% in accuracy, 99.31% in sensitivity and 71% in peak signal to noise ratio. The outcomes show that the proposed method has achieved high accuracy than other conventional methods in early detection of lung cancer.

Practical implications

The proposed algorithm is implemented and tested by using more than 500 images which are collected from public and private databases. The proposed research framework can be used to implement contextual diagnostic analysis.

Originality/value

The cancer nodules in CT images are precisely segmented by integrating the algorithms of cuckoo search and Otsu thresholding in order to classify malicious and non-malicious nodules.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 6 December 2020

Binghai Zhou, Xiujuan Li and Yuxian Zhang

This paper aims to investigate the part feeding scheduling problem with electric vehicles (EVs) for automotive assembly lines. A point-to-point part feeding model has been…

Abstract

Purpose

This paper aims to investigate the part feeding scheduling problem with electric vehicles (EVs) for automotive assembly lines. A point-to-point part feeding model has been formulated to minimize the number of EVs and the maximum handling time by specifying the EVs and sequence of all the delivery tasks.

Design/methodology/approach

First, a mathematical programming model of point-to-point part feeding scheduling problem (PTPPFSP) with EVs is presented. Because the PTPPFSP is NP-hard, an improved multi-objective cuckoo search (IMCS) algorithm is developed with novel search strategies, possessing the self-adaptive Levy flights, the Gaussian mutation and elite selection strategy to strengthen the algorithm’s optimization performance. In addition, two local search operators are designed for deep optimization. The effectiveness of the IMCS algorithm is verified by dealing with the PTPPFSP in different problem scales.

Findings

Numerical experiments are used to demonstrate how the IMCS algorithm serves as an efficient method to solve the PTPPFSP with EVs. The effectiveness and feasibility of the IMCS algorithm are validated by approximate Pareto fronts obtained from the instances of different problem scales. The computational results show that the IMCS algorithm can achieve better performance than the other high-performing algorithms in terms of solution quality, convergence and diversity.

Research limitations/implications

This study is applicable without regard to the breakdown of EVs. The current research contributes to the scheduling of in-plant logistics for automotive assembly lines, and it could be modified to cope with similar part feeding scheduling problems characterized by just-in-time (JIT) delivery.

Originality/value

Both limited electricity capacity and no earliness and tardiness constraints are considered, and the scheduling problem is solved satisfactorily and innovatively for an efficient JIT part feeding with EVs applied to in-plant logistics.

Details

Assembly Automation, vol. 41 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 November 2016

Xiujie Wang, Jian Liu and Can Ma

The purpose of this study is that on the basis of the competitive edge theory, source mechanism and evaluation approaches of industrial cluster competitiveness, combined with…

2540

Abstract

Purpose

The purpose of this study is that on the basis of the competitive edge theory, source mechanism and evaluation approaches of industrial cluster competitiveness, combined with international trends in the automobile industry and the features of Chinese automobile industrial cluster development, an evaluation index system about cluster competitiveness of auto industry is built with comprehensive consideration of factors such as cluster development environment, external scale effect and internal competitiveness from the perspective of value chain of automobile industry.

Design/methodology/approach

An evaluation index system for automobile industrial cluster competitiveness was realized by integrating current strengths and future growth capacities with multidimensional, dynamic and comprehensive characteristics, which included 3 second-level, 10 third-level and 16 fourth-level indices. In the light of evaluation methods, a group intelligence optimization algorithm – (cuckoo search) – and traditional methods of complex decision-making system – analytic hierarchy process (AHP) – were combined to propose the cuckoo-AHP evaluation method. It was applied for the calculation and optimization of weight values in an automobile industrial cluster competitiveness evaluation index for the purpose of obtaining better scientific and more reliable results.

Findings

The research might further enrich the evaluation theory of automobile industrial cluster competitiveness and also can be useful for showing how traditional evaluation methods can be combined with intelligent algorithms to carry out better automobile industrial cluster competitiveness evaluations. In addition, studies of channels for kick-starting Chinese auto industrial cluster competitiveness are expected to provide references for how to enhance the cluster competitiveness of the Chinese automobile industry.

Practical implications

Changsha and Liuzhou, the Guangxi automobile industrial clusters as the two empirical analysis objects selected for this paper, are geographically adjacent to each other. The automobile industries of the two cities are local pillar industries with the strong support of the local government. Both clusters have their own advantages and weak points with different characteristics of cluster development, and they enjoy a representative significance amongst China’s numerous auto industrial clusters that are taking shape. Comparative analysis of both clusters serves as a good reference for the objective evaluation of the competitiveness of Chinese automobile clusters in terms of their real and practical developments and in respect of the success of reasonable scientific and industrial cluster policies.

Originality/value

Multidimensional, dynamic, integrated evaluation index systems are constructed around automobile industrial cluster competitiveness, which has taken into account developments in current strengths and future growth capacity. The cuckoo-AHP evaluation method has been formed by combining the traditional decision-making method known as AHP with a new meta-heuristic optimization algorithm called “cuckoo search”. Both have been used in evaluations of automobile industrial cluster competitiveness in Liuzhou and Changsha, which will be beneficial for enriching automobile industrial cluster competitiveness evaluation theory and new evaluation methods that will enable better evaluations of automobile industrial cluster competitiveness.

Details

Chinese Management Studies, vol. 10 no. 4
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 19 February 2020

Ridvan Oruc and Tolga Baklacioglu

The purpose of this study is to create a new fuel flow rate model adopting cuckoo search algorithm (CSA) for the climbing phase of the flight.

Abstract

Purpose

The purpose of this study is to create a new fuel flow rate model adopting cuckoo search algorithm (CSA) for the climbing phase of the flight.

Design/methodology/approach

Using the real flight data records (FDRs) of B737-800 passenger aircraft, a new fuel flow rate model for the climbing phase of the flight was developed by incorporating CSA. In the model, fuel flow rate is given as a function of altitude and true airspeed. The aim is to create a model that yields results that are closest to the real fuel flow rate values obtained from flight data records. Various error analysis methods were used to test the accuracy of the obtained values. Finally, the effect of change of some CSA parameters on the model was investigated.

Findings

It was observed that the derived model is able to predict real fuel flow rate values with high accuracy. It has been deduced that increasing the number of nest (n) and discovery rate of alien nests (pa) values of CSA parameters to a certain value gradually decreases the model’s accuracy.

Practical implications

This model is considered to be useful in air traffic management decision support systems, simulation applications, aircraft trajectory prediction models and aircraft performance modelling studies because of the high accuracy accomplished by the CSA model.

Originality/value

The originality of this study is the development of a new fuel flow rate model using CSA as a first attempt in the literature. The use of real flight data is important for the originality and reliability of the model.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 September 2021

Nageswara Rao Eluri, Gangadhara Rao Kancharla, Suresh Dara and Venkatesulu Dondeti

Gene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its…

Abstract

Purpose

Gene selection is considered as the fundamental process in the bioinformatics field. The existing methodologies pertain to cancer classification are mostly clinical basis, and its diagnosis capability is limited. Nowadays, the significant problems of cancer diagnosis are solved by the utilization of gene expression data. The researchers have been introducing many possibilities to diagnose cancer appropriately and effectively. This paper aims to develop the cancer data classification using gene expression data.

Design/methodology/approach

The proposed classification model involves three main phases: “(1) Feature extraction, (2) Optimal Feature Selection and (3) Classification”. Initially, five benchmark gene expression datasets are collected. From the collected gene expression data, the feature extraction is performed. To diminish the length of the feature vectors, optimal feature selection is performed, for which a new meta-heuristic algorithm termed as quantum-inspired immune clone optimization algorithm (QICO) is used. Once the relevant features are selected, the classification is performed by a deep learning model called recurrent neural network (RNN). Finally, the experimental analysis reveals that the proposed QICO-based feature selection model outperforms the other heuristic-based feature selection and optimized RNN outperforms the other machine learning methods.

Findings

The proposed QICO-RNN is acquiring the best outcomes at any learning percentage. On considering the learning percentage 85, the accuracy of the proposed QICO-RNN was 3.2% excellent than RNN, 4.3% excellent than RF, 3.8% excellent than NB and 2.1% excellent than KNN for Dataset 1. For Dataset 2, at learning percentage 35, the accuracy of the proposed QICO-RNN was 13.3% exclusive than RNN, 8.9% exclusive than RF and 14.8% exclusive than NB and KNN. Hence, the developed QICO algorithm is performing well in classifying the cancer data using gene expression data accurately.

Originality/value

This paper introduces a new optimal feature selection model using QICO and QICO-based RNN for effective classification of cancer data using gene expression data. This is the first work that utilizes an optimal feature selection model using QICO and QICO-RNN for effective classification of cancer data using gene expression data.

Open Access
Article
Publication date: 8 March 2022

Armin Mahmoodi, Milad Jasemi Zergani, Leila Hashemi and Richard Millar

The purpose of this paper is to maximize the total demand covered by the established additive manufacturing and distribution centers and maximize the total literal weight assigned…

1197

Abstract

Purpose

The purpose of this paper is to maximize the total demand covered by the established additive manufacturing and distribution centers and maximize the total literal weight assigned to the drones.

Design/methodology/approach

Disaster management or humanitarian supply chains (HSCs) differ from commercial supply chains in the fact that the aim of HSCs is to minimize the response time to a disaster as compared to the profit maximization goal of commercial supply chains. In this paper, the authors develop a relief chain structure that accommodates emerging technologies in humanitarian logistics into the two phases of disaster management – the preparedness stage and the response stage.

Findings

Solving the model by the genetic and the cuckoo optimization algorithm (COA) and comparing the results with the ones obtained by The General Algebraic Modeling System (GAMS) clear that genetic algorithm overcomes other options as it has led to objective functions that are 1.6% and 24.1% better comparing to GAMS and COA, respectively.

Originality/value

Finally, the presented model has been solved with three methods including one exact method and two metaheuristic methods. Results of implementation show that Non-dominated sorting genetic algorithm II (NSGA-II) has better performance in finding the optimal solutions.

Article
Publication date: 20 November 2017

Mohamed Abdel-Basset, Laila A. Shawky and Arun Kumar Sangaiah

The purpose of this paper is to present a comparison between two well-known Lévy-based meta-heuristics called cuckoo search (CS) and flower pollination algorithm (FPA).

Abstract

Purpose

The purpose of this paper is to present a comparison between two well-known Lévy-based meta-heuristics called cuckoo search (CS) and flower pollination algorithm (FPA).

Design/methodology/approach

Both the algorithms (Lévy-based meta-heuristics called CS and Flower Pollination) are tested on selected benchmarks from CEC 2017. In addition, this study discussed all CS and FPA comparisons that were included implicitly in other works.

Findings

The experimental results show that CS is superior in global convergence to the optimal solution, while FPA outperforms CS in terms of time complexity.

Originality/value

This paper compares the working flow and significance of FPA and CS which seems to have many similarities in order to help the researchers deeply understand the differences between both algorithms. The experimental results are clearly shown to solve the global optimization problem.

Details

Library Hi Tech, vol. 35 no. 4
Type: Research Article
ISSN: 0737-8831

Keywords

Open Access
Article
Publication date: 7 August 2017

Ali M. Abdulshahed, Andrew P. Longstaff and Simon Fletcher

The purpose of this paper is to produce an intelligent technique for modelling machine tool errors caused by the thermal distortion of Computer Numerical Control (CNC) machine…

1646

Abstract

Purpose

The purpose of this paper is to produce an intelligent technique for modelling machine tool errors caused by the thermal distortion of Computer Numerical Control (CNC) machine tools. A new metaheuristic method, the cuckoo search (CS) algorithm, based on the life of a bird family is proposed to optimize the GMC(1, N) coefficients. It is then used to predict thermal error on a small vertical milling centre based on selected sensors.

Design/methodology/approach

A Grey model with convolution integral GMC(1, N) is used to design a thermal prediction model. To enhance the accuracy of the proposed model, the generation coefficients of GMC(1, N) are optimized using a new metaheuristic method, called the CS algorithm.

Findings

The results demonstrate good agreement between the experimental and predicted thermal error. It can therefore be concluded that it is possible to optimize a Grey model using the CS algorithm, which can be used to predict the thermal error of a CNC machine tool.

Originality/value

An attempt has been made for the first time to apply CS algorithm for calibrating the GMC(1, N) model. The proposed CS-based Grey model has been validated and compared with particle swarm optimization (PSO) based Grey model. Simulations and comparison show that the CS algorithm outperforms PSO and can act as an alternative optmization algorithm for Grey models that can be used for thermal error compensation.

Details

Grey Systems: Theory and Application, vol. 7 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 13 August 2018

Goga Vladimir Cvetkovski, Lidija Petkovska and Paul Lefley

The purpose of this paper is to perform an optimal design of a single-phase permanent magnet brushless DC motor (SPBLDCM) by using efficiency of the motor as an objective…

Abstract

Purpose

The purpose of this paper is to perform an optimal design of a single-phase permanent magnet brushless DC motor (SPBLDCM) by using efficiency of the motor as an objective function. In the design procedure of the motor, a cuckoo search (CS) algorithm is used as an optimization tool.

Design/methodology/approach

For the purpose of this research work, a computer program for optimal design of electrical machines based on the CS optimization has been developed. Based on the design characteristics of SPBLDCM, some of the motor parameters are chosen to be constant and others variable. A comparative analysis of the initial motor model and the CS model based on the value of the objective function, as well as the values of the optimization parameters, is performed and presented.

Findings

Based on the comparative data analysis of both motor models, it can be concluded that the main objective of the optimization is realized, and it is achieved by an improvement of the efficiency of the motor.

Practical implications

The optimal design approach of SPBLDCM presented in this research work can be also implemented on other electrical machines and devices using the same or even other objective functions.

Originality/value

An optimization technique using CS as an optimization tool has been developed and applied in the design procedure of SPBLDCM. According to the results, it can be concluded that the CS algorithm is a suitable tool for design optimization of SPBLDCM and electromagnetic devices in general. The quality of the CS model has been proved through the data analysis of the initial and optimized solution. The quality of the CS solution has been also proved by comparative analysis of the two motor models using FEM as a performance analysis tool.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

11 – 20 of 426