Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 21 March 2023

Abdelmoumene Djabi

The paper presents a mathematical problem involving quasistatic contact between a thermo-electro-viscoelastic body and a lubricated foundation, where the contact is described…

Abstract

Purpose

The paper presents a mathematical problem involving quasistatic contact between a thermo-electro-viscoelastic body and a lubricated foundation, where the contact is described using a version of Coulomb’s law of friction that includes normal damped response conditions and heat exchange with a conductive foundation. The constitutive law for the material is thermo-electro-viscoelastic. The problem is formulated as a system that includes a parabolic equation of the first kind for the temperature, an evolutionary elliptic quasivariational inequality for the displacement and a variational elliptic equality for the electric stress. The author establishes the existence of a unique weak solution to the problem by utilizing classical results for evolutionary quasivariational elliptic inequalities, parabolic differential equations and fixed point arguments.

Design/methodology/approach

The author establishes a variational formulation for the model and proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.

Findings

The author proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.

Originality/value

The author studies a mathematical problem between a thermo-electro-viscoelastic body and a lubricated foundation using a version of Coulomb’s law of friction including the normal damped response conditions and the heat exchange with a conductive foundation, which is original and requires a good understanding of modeling and mathematical tools.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 16 January 2024

Mohamed Abd Alsamieh

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of…

Abstract

Purpose

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of frequency, stroke length and load on film thickness and pressure variation during one operating cycle are discussed. The general tribological behavior of elastohydrodynamic lubrication during reciprocating motion is explained.

Design/methodology/approach

The system of equations of Reynolds, film thickness considering surface deformation and load balance equations are solved using the Newton-Raphson technique with the Gauss-Seidel iteration method. Numerical solutions were performed with a sinusoidal contact surface velocity to simulate reciprocating elastohydrodynamics. The methodology is validated using historical experimental measurements/observations and numerical predictions from other researchers.

Findings

The numerical results showed that the change in oil film during a stroke is controlled by both wedge and squeeze effects. When the surface velocity is zero at the stroke end, the squeeze effect is most noticeable. As the frequency increases, the general trend of central and minimum film thickness increases. With the same entraining speed but different stroke lengths, the properties of the oil film differ from one another, with an increase in stroke length leading to a reduction in film thickness. Finally, the numerical results showed that the overall film thickness decreases with increasing load.

Originality/value

General tribological behaviors of elastohydrodynamic lubricating point contact, represented by pressure and film thickness variations over time and profiles, are analyzed under reciprocating motion during one working cycle to show the effects of frequency, stroke length and applied load.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 February 2024

Safeya Almazrouei, Shaker Bani-Melhem and Faridah Mohd-Shamsudin

Job characteristics can potentially influence employees’ attitudes and behaviors. However, their impact on employees’ innovative behaviors, particularly in public sector…

Abstract

Purpose

Job characteristics can potentially influence employees’ attitudes and behaviors. However, their impact on employees’ innovative behaviors, particularly in public sector organizations, has received little scholarly attention. Based on relational job design theory and the broaden-and-build theory of positive emotions, this study aims to examine the effect of job contact on public sector employees’ innovative work behavior through the mediator of happiness at work. It also assesses whether prosocial motivation strengthens the influence of job contact on innovative work behavior (via happiness at work).

Design/methodology/approach

The model was examined on a sample of 180 employee-supervisor dyads (90 supervisors and 180 employees) recruited from various government departments in the United Arab Emirates.

Findings

The findings support the proposed moderated mediation model in which job contact positively and significantly impacts innovative work behavior. The association between job contact and innovative behavior via happiness at work is found to be stronger for employees who are highly prosocially motivated.

Originality/value

The findings offer prescriptive insights into public sector employee happiness and prosocial motivation by illustrating when and how job contact influences innovative work behavior. The authors also present relevant managerial recommendations for promoting public sector employees’ innovative behavior.

Details

International Journal of Innovation Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-2223

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 April 2023

Shaobo Liang and Linfeng Yu

As voice search has progressively become a new way of information acquisition and human–computer interaction, this paper aims to explore the users' voice search behavior in…

Abstract

Purpose

As voice search has progressively become a new way of information acquisition and human–computer interaction, this paper aims to explore the users' voice search behavior in human–vehicle interaction.

Design/methodology/approach

This study employed mixed research methods, including questionnaires and interviews. A total of 151 Amazon MTurk volunteers were recruited to complete a questionnaire based on their most recent and impressive voice search experience. After the questionnaire, this paper conducted an online interview with the participants.

Findings

This paper studied users' voice search behavior characteristics in the context of the human–vehicle interaction and analyzed the voice search content, search need, search motivation and user satisfaction. In addition, this paper studied the barriers and suggestions for voice search in human–vehicle interaction through a content analysis of the interviews.

Practical implications

This paper's analysis of users' barriers and suggestions has a specific reference value for optimizing the voice search interaction system and improving the service.

Originality/value

This study is exploratory research that seeks to identify users' voice search needs and tasks and investigate voice search satisfaction in human–vehicle interaction context.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 16 April 2024

Kunpeng Shi, Guodong Jin, Weichao Yan and Huilin Xing

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel…

Abstract

Purpose

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel machine-learning method for the rapid estimation of permeability of porous media at different deformation stages constrained by hydro-mechanical coupling analysis.

Design/methodology/approach

A convolutional neural network (CNN) is proposed in this paper, which is guided by the results of finite element coupling analysis of equilibrium equation for mechanical deformation and Boltzmann equation for fluid dynamics during the hydro-mechanical coupling process [denoted as Finite element lattice Boltzmann model (FELBM) in this paper]. The FELBM ensures the Lattice Boltzmann analysis of coupled fluid flow with an unstructured mesh, which varies with the corresponding nodal displacement resulting from mechanical deformation. It provides reliable label data for permeability estimation at different stages using CNN.

Findings

The proposed CNN can rapidly and accurately estimate the permeability of deformable porous media, significantly reducing processing time. The application studies demonstrate high accuracy in predicting the permeability of deformable porous media for both the test and validation sets. The corresponding correlation coefficients (R2) is 0.93 for the validation set, and the R2 for the test set A and test set B are 0.93 and 0.94, respectively.

Originality/value

This study proposes an innovative approach with the CNN to rapidly estimate permeability in porous media under dynamic deformations, guided by FELBM coupling analysis. The fast and accurate performance of CNN underscores its promising potential for future applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 July 2020

Patrícia Moura e Sá, Catarina Frade, Fernanda Jesus, Mónica Lopes, Teresa Maneca Lima and Vitor Raposo

Wicked problems require collaborative innovation approaches. Understanding the problem from the users' perspective is essential. Based on a complex and ill-defined case, the…

Abstract

Purpose

Wicked problems require collaborative innovation approaches. Understanding the problem from the users' perspective is essential. Based on a complex and ill-defined case, the purpose of the current paper is to identify some critical success factors in defining the “right problem” to be addressed.

Design/methodology/approach

An empirical research study was carried out in a low-density municipality (case study). Extensive data were collected from official databases, individual semi-structured interviews and a focus group involving citizens, local authorities, civil servants and other relevant stakeholders.

Findings

As defined by the central government, the problem to be addressed by the research team was to identify which justice services should be made available locally to a small- and low-density community. The problem was initially formulated using top-down reasoning. In-depth contact with citizens and key local players revealed that the lack of justice services was not “the issue” for that community. Mobility constraints and the shortage of economic opportunities had a considerable impact on the lack of demand for justice services. By using a bottom-up perspective, it was possible to reframe the problem to be addressed and suggest a new concept to be tested at later stages.

Social implications

The approach followed called attention to the importance of listening to citizens and local organisations with a profound knowledge of the territory to effectively identify and circumscribe a local problem in the justice field.

Originality/value

The paper highlights the limitations of traditional rational problem-solving approaches and contributes to expanding the voice-of-the-customer principle showing how it can lead to a substantially new definition of the problem to be addressed.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 12 January 2024

Manar Hamid Jasim and Ali Mohammed Ali Al-Araji

The purpose of this study is to model the theory of the low-velocity impact (LVI) process on sandwich beams consisting of flexible cores and face sheets reinforced with…

Abstract

Purpose

The purpose of this study is to model the theory of the low-velocity impact (LVI) process on sandwich beams consisting of flexible cores and face sheets reinforced with functionally graded carbon nanotubes (CNTs).

Design/methodology/approach

A series of parameters derived from molecular dynamics are used to consider the size scale in the mixture rule for the combination of CNTs and resin. A procedure involving the use of the first-order shear deformation theory of the beam is used to provide the displacement field of the sandwich beam. The energy method and subsequently the generalized Lagrange method are used to derive the motion equations. Due to the use of Hertz’s nonlinear theory to calculate the contact force, the equations of motion are nonlinear. Validation of the problem is carried out by comparing natural frequencies with other papers.

Findings

The influence of a series of parameters such as CNTs distributions pattern in the face sheets, the influence of the CNTs volume fraction and the influence of the core thickness to the face sheets thickness ratio in the issue of LVI on sandwich beams with clamped-clamped boundary conditions is investigated. The result shows that the type of CNTs pattern in the face sheet and the CNTs volume fraction have a very important effect on the answer to the problem, which is caused by the change in the value of the Young’s modulus of the beam at the contact surface. Changes in the core thickness to the face sheets thickness ratio has little effect on the impact response.

Originality/value

Considering the important application of sandwich structures in vehicles, aviation and ships, in this research, sandwich beams consisting of flexible core and CNTs-reinforced face sheets are investigated under LVI.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 November 2023

Hasan Uvet, John Dickens, Jason Anderson, Aaron Glassburner and Christopher A. Boone

This research paper aims to examine two hybrid models of logistics service quality (LSQ) and its influence on satisfaction, loyalty and future purchase intention in a…

Abstract

Purpose

This research paper aims to examine two hybrid models of logistics service quality (LSQ) and its influence on satisfaction, loyalty and future purchase intention in a business-to-consumer (B2C) e-commerce context. This study extends the literature for LSQ by incorporating the second-order assurance quality construct, which comprises personnel contact quality, order discrepancy handling and order returns, into one of the hybrid models.

Design/methodology/approach

A survey-based approach is used to collect data. Participant responses to questions concerning multiple LSQ dimensions and behavioral perceptions from their most recent online shopping experience are measured using structural equation modeling.

Findings

Findings highlight the importance of including a second-order construct assurance quality as a more explanatory model. Results illustrate that online ordering procedures and assurance quality impact customer satisfaction more than other prominent LSQ dimensions. Furthermore, the findings revealed a customer loyalty is a partial mediator between customer satisfaction and future purchase intention. This underscores the significance of improved logistics services as a competitive edge for e-commerce retailers.

Research limitations/implications

Implications are limited to the e-commerce B2C domain.

Practical implications

The findings of this study underscore critical LSQ dimensions that garner greater satisfaction and retention in the online shopping experience. The results indicate that the effective and efficient handling of the initial order and any order problem significantly influences customer satisfaction and reaps the long-term benefits of customer retention.

Originality/value

The authors present and empirically test a hybrid model of LSQ in a B2C e-commerce domain that captures many of the important elements of the customer experience as espoused in the literature.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

1 – 10 of over 2000