Search results

1 – 10 of over 11000
Article
Publication date: 9 October 2019

Hui Chen and Donghai Liu

The purpose of this study is to develop a stochastic finite element method (FEM) to solve the calculation precision deficiency caused by spatial variability of dam compaction…

Abstract

Purpose

The purpose of this study is to develop a stochastic finite element method (FEM) to solve the calculation precision deficiency caused by spatial variability of dam compaction quality.

Design/methodology/approach

The Choleski decomposition method was applied to generate constraint random field of porosity. Large-scale laboratory triaxial tests were conducted to determine the quantitative relationship between the dam compaction quality and Duncan–Chang constitutive model parameters. Based on this developed relationship, the constraint random fields of the mechanical parameters were generated. The stochastic FEM could be conducted.

Findings

When the fully random field was simulated without the restriction effect of experimental data on test pits, the spatial variabilities of both displacement and stress results were all overestimated; however, when the stochastic FEM was performed disregarding the correlation between mechanical parameters, the variabilities of vertical displacement and stress results were underestimated and variation pattern for horizontal displacement also changed. In addition, the method could produce results that are closer to the actual situation.

Practical implications

Although only concrete-faced rockfill dam was tested in the numerical examples, the proposed method is applicable for arbitrary types of rockfill dams.

Originality/value

The value of this study is that the proposed method allowed for the spatial variability of constitutive model parameters and that the applicability was confirmed by the actual project.

Details

Engineering Computations, vol. 36 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 March 2024

Yahao Wang, Zhen Li, Yanghong Li and Erbao Dong

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new…

Abstract

Purpose

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new constraint method to improve the performance of the sampling-based planner.

Design/methodology/approach

In this work, a constraint method (TC method) based on the idea of cross-sampling is proposed. This method uses the tangent space in the workspace to approximate the constrained manifold pattern and projects the entire sampling process into the workspace for constraint correction. This method avoids the need for extensive computational work involving multiple iterations of the Jacobi inverse matrix in the configuration space and retains the sampling properties of the sampling-based algorithm.

Findings

Simulation results demonstrate that the performance of the planner when using the TC method under the end-effector constraint surpasses that of other methods. Physical experiments further confirm that the TC-Planner does not cause excessive constraint errors that might lead to task failure. Moreover, field tests conducted on robots underscore the effectiveness of the TC-Planner, and its excellent performance, thereby advancing the autonomy of robots in power-line connection tasks.

Originality/value

This paper proposes a new constraint method combined with the rapid-exploring random trees algorithm to generate collision-free trajectories that satisfy the constraints for a high-dimensional robotic system under end-effector constraints. In a series of simulation and experimental tests, the planner using the TC method under end-effector constraints efficiently performs. Tests on a power distribution live-line operation robot also show that the TC method can greatly aid the robot in completing operation tasks with end-effector constraints. This helps robots to perform tasks with complex end-effector constraints such as grinding and welding more efficiently and autonomously.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 June 2023

Yuming Liu, Yong Zhao, Qingyuan Lin, Sheng Liu, Ende Ge and Wei Wang

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations…

Abstract

Purpose

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations. Furthermore, the accuracy of the method would be verified by comparing it with the other conventional methods for calculating the optimal assembly pose.

Design/methodology/approach

First, the surface morphology of the parts with manufacturing deviations would be modeled to obtain the skin model shapes that can characterize the specific geometric features of the part. The model can provide the basis for the subsequent contact deformation analysis. Second, the simulated non-nominal components are discretized into point cloud data, and the spatial position of the feature points is corrected. Furthermore, the evaluation index to measure the assembly quality has been established, which integrates the contact deformations and the spatial relationship of the non-nominal parts’ key feature points. Third, the improved particle swarm optimization (PSO) algorithm combined with the finite element method is applied to the process of solving the optimal pose of the assembly, and further deformation calculations are conducted based on interference detection. Finally, the feasibility of the optimal pose prediction method is verified by a case.

Findings

The proposed method has been well suited to solve the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the effectiveness of the method with an example of the shaft-hole assembly.

Research limitations/implications

The method proposed in this paper has been well suited to the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the method with an example of the shaft-hole assembly.

Originality/value

The different surface morphology influenced by manufacturing deviations will lead to the various contact behaviors of the mating surfaces. The assembly problem for the components with complex geometry is usually accompanied by deformation due to the loading during the contact process, which may further affect the accuracy of the assembly. Traditional approaches often use worst-case methods such as tolerance offsets to analyze and optimize the assembly pose. In this paper, it is able to characterize the specific parts in detail by introducing the skin model shapes represented with the point cloud data. The dynamic changes in the parts' contact during the fitting process are also considered. Using the PSO method that takes into account the contact deformations improve the accuracy by 60.7% over the original method that uses geometric alignment alone. Moreover, it can optimize the range control of the contact to the maximum extent to prevent excessive deformations.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 August 2024

Yahao Wang, Yanghong Li, Zhen Li, HaiYang He, Sheng Chen and Erbao Dong

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling…

44

Abstract

Purpose

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling Framework (TC-Framework) that enables the planner to adapt to different end-effector constraints.

Design/methodology/approach

This work presents a standard constraint methodology for representing end-effector constraints as a collection of constraint primitives. The constraint primitives are merged sequentially into the planner, and a unified constraint input interface and constraint module are added to the standard sampling-based planner framework. This approach enables the realization of a generic planner framework that avoids the need to build separate planners for different end-effector constraints.

Findings

Simulation tests have demonstrated that the planner based on TC-framework can adapt to various end-effector constraints. Physical experiments have also confirmed that the framework can be used in real robotic systems to perform autonomous operational tasks. The framework’s strong compatibility with constraints allows for generalization to other tasks without modifying the scheduler, significantly reducing the difficulty of robot deployment in task-diverse scenarios.

Originality/value

This paper proposes a unified constraint method based on constraint primitives to enhance the sampling-based planner. The planner can now adapt to different end effector constraints by opening up the input interface for constraints. A series of simulation tests were conducted to evaluate the TC-Framework-based planner, which demonstrated its ability to adapt to various end-effector constraints. Tests on a physical experimental system show that the framework allows the robot to perform various operational tasks without requiring modifications to the planner. This enhances the value of robots for applications in fields with diverse tasks.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 July 2022

Debiao Meng, Shiyuan Yang, Chao He, Hongtao Wang, Zhiyuan Lv, Yipeng Guo and Peng Nie

As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex…

Abstract

Purpose

As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex engineering systems, not only because of the accurate evaluation of the impact of uncertain factors but also the relatively good balance between economy and safety of performance. However, with the increasing complexity of engineering technology, the proposed RBMDO method gradually cannot effectively solve the higher nonlinear coupled multidisciplinary uncertainty design optimization problems, which limits the engineering application of RBMDO. Many valuable works have been done in the RBMDO field in recent decades to tackle the above challenges. This study is to review these studies systematically, highlight the research opportunities and challenges, and attempt to guide future research efforts.

Design/methodology/approach

This study presents a comprehensive review of the RBMDO theory, mainly including the reliability analysis methods of different uncertainties and the decoupling strategies of RBMDO.

Findings

First, the multidisciplinary design optimization (MDO) preliminaries are given. The basic MDO concepts and the corresponding mathematical formulas are illustrated. Then, the procedures of three RBMDO methods with different reliability analysis strategies are introduced in detail. These RBMDO methods were proposed for the design optimization problems under different uncertainty types. Furtherly, an optimization problem for a certain operating condition of a turbine runner blade is introduced to illustrate the engineering application of the above method. Finally, three aspects of future challenges for RBMDO, namely, time-varying uncertainty analysis; high-precision surrogate models, and verification, validation and accreditation (VVA) for the model, are discussed followed by the conclusion.

Originality/value

The scope of this study is to introduce the RBMDO theory systematically. Three commonly used RBMDO-SORA methods are reviewed comprehensively, including the methods' general procedures and mathematical models.

Article
Publication date: 11 July 2023

Yuze Shang, Fei Liu, Ping Qin, Zhizhong Guo and Zhe Li

The goal of this research is to develop a dynamic step path planning algorithm based on the rapidly exploring random tree (RRT) algorithm that combines Q-learning with the…

Abstract

Purpose

The goal of this research is to develop a dynamic step path planning algorithm based on the rapidly exploring random tree (RRT) algorithm that combines Q-learning with the Gaussian distribution of obstacles. A route for autonomous vehicles may be swiftly created using this algorithm.

Design/methodology/approach

The path planning issue is divided into three key steps by the authors. First, the tree expansion is sped up by the dynamic step size using a combination of Q-learning and the Gaussian distribution of obstacles. The invalid nodes are then removed from the initially created pathways using bidirectional pruning. B-splines are then employed to smooth the predicted pathways.

Findings

The algorithm is validated using simulations on straight and curved highways, respectively. The results show that the approach can provide a smooth, safe route that complies with vehicle motion laws.

Originality/value

An improved RRT algorithm based on Q-learning and obstacle Gaussian distribution (QGD-RRT) is proposed for the path planning of self-driving vehicles. Unlike previous methods, the authors use Q-learning to steer the tree's development direction. After that, the step size is dynamically altered following the density of the obstacle distribution to produce the initial path rapidly and cut down on planning time even further. In the aim to provide a smooth and secure path that complies with the vehicle kinematic and dynamical restrictions, the path is lastly optimized using an enhanced bidirectional pruning technique.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6067

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 4 June 2024

Yajing Zheng and Dekun Zhang

The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times. These fluctuations…

Abstract

Purpose

The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times. These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals. The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.

Design/methodology/approach

To achieve this objective, the paper simulates actual train operations, incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station. The Monte Carlo simulation method is adopted to solve this problem. This approach transforms a nonlinear model, which includes constraints from probability distribution functions and is difficult to solve directly, into a linear programming model that is easier to handle. The method then linearly weights two objectives to optimize the solution.

Findings

Through the application of Monte Carlo simulation, the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model. By continuously adjusting the weighting coefficients of the linear objectives, the method is able to optimize the Pareto solution. Notably, this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.

Originality/value

The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times. The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement. Furthermore, the method’s ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.

Article
Publication date: 1 December 2021

Shanlin Zhong, Ziyu Chen and Junjie Zhou

Human-like musculoskeletal robots can fulfill flexible movement and manipulation with the help of multi joints and actuators. However, in general, sophisticated structures…

Abstract

Purpose

Human-like musculoskeletal robots can fulfill flexible movement and manipulation with the help of multi joints and actuators. However, in general, sophisticated structures, accurate sensors and well-designed control are all necessary for a musculoskeletal robot to achieve high-precision movement. How to realize the reliable and accurate movement of the robot under the condition of limited sensing and control accuracy is still a bottleneck problem. This paper aims to improve the movement performance of musculoskeletal system by bio-inspired method.

Design/methodology/approach

Inspired by two kinds of natural constraints, the convergent force field found in neuroscience and attractive region in the environment found in information science, the authors proposed a structure transforming optimization algorithm for constructing constraint force field in musculoskeletal robots. Due to the characteristics of rigid-flexible coupling and variable structures, a constraint force field can be constructed in the task space of the musculoskeletal robot by optimizing the arrangement of muscles.

Findings

With the help of the constraint force field, the robot can complete precise and robust movement with constant control signals, which brings in the possibility to reduce the requirement of sensing feedback during the motion control of the robot. Experiments are conducted on a musculoskeletal model to evaluate the performance of the proposed method in movement accuracy, noise robustness and structure sensitivity.

Originality/value

A novel concept, constraint force field, is proposed to realize high-precision movements of musculoskeletal robots. It provides a new theoretical basis for improving the performance of robotic manipulation such as assembly and grasping under the condition that the accuracy of control and sensory are limited.

Details

Assembly Automation, vol. 42 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 11000