Search results

1 – 10 of 80
Article
Publication date: 15 March 2024

Namita Jain, Vikas Gupta, Valerio Temperini, Dirk Meissner and Eugenio D’angelo

This paper aims to provide insight into the evolving relationship between humans and machines, understanding its multifaceted impact on our lifestyle and landscape in the past as…

Abstract

Purpose

This paper aims to provide insight into the evolving relationship between humans and machines, understanding its multifaceted impact on our lifestyle and landscape in the past as well as in the present, with implications for the near future. It uses bibliometric analysis combined with a systematic literature review to identify themes, trace historical developments and offer a direction for future human–machine interactions (HMIs).

Design/methodology/approach

To provide thorough coverage of publications from the previous four decades, the first section presents a text-based cluster bibliometric analysis based on 305 articles from 2,293 initial papers in the Scopus and Web of Science databases produced between 1984 and 2022. The authors used VOS viewer software to identify the most prominent themes through cluster identification. This paper presents a systematic literature review of 63 qualified papers using the PRISMA framework.

Findings

Next, the systematic literature review and bibliometric analysis revealed four major historical themes and future directions. The results highlight four major research themes for the future: from Taylorism to advanced technologies; machine learning and innovation; Industry 4.0, Society 5.0 and cyber–physical system; and psychology and emotions.

Research limitations/implications

There is growing anxiety among humankind that in the future, machines will overtake humans to replace them in various roles. The current study investigates the evolution of HMIs from their historical roots to Society 5.0, which is understood to be a human-centred society. It balances economic advancement with the resolution of social problems through a system that radically integrates cyberspace and physical space. This paper contributes to research and current limited knowledge by identifying relevant themes and offering scope for future research directions. A close look at the analysis posits that humans and machines complement each other in various roles. Machines reduce the mechanical work of human beings, bringing the elements of humanism and compassion to mechanical tasks. However, in the future, smart innovations may yield machines with unmatched dexterity and capability unthinkable today.

Originality/value

This paper attempts to explore the ambiguous and dynamic relationships between humans and machines. The present study combines systematic review and bibliometric analysis to identify prominent trends and themes. This provides a more robust and systematic encapsulation of this evolution and interaction, from Taylorism to Society 5.0. The principles of Taylorism are extended and redefined in the context of HMIs, especially advanced technologies.

Details

Journal of Management History, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1751-1348

Keywords

Article
Publication date: 7 March 2024

Manpreet Kaur, Amit Kumar and Anil Kumar Mittal

In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered…

Abstract

Purpose

In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered considerable attention from researchers worldwide. The present study aims to synthesize the research field concerning ANN applications in the stock market to a) systematically map the research trends, key contributors, scientific collaborations, and knowledge structure, and b) uncover the challenges and future research areas in the field.

Design/methodology/approach

To provide a comprehensive appraisal of the extant literature, the study adopted the mixed approach of quantitative (bibliometric analysis) and qualitative (intensive review of influential articles) assessment to analyse 1,483 articles published in the Scopus and Web of Science indexed journals during 1992–2022. The bibliographic data was processed and analysed using VOSviewer and R software.

Findings

The results revealed the proliferation of articles since 2018, with China as the dominant country, Wang J as the most prolific author, “Expert Systems with Applications” as the leading journal, “computer science” as the dominant subject area, and “stock price forecasting” as the predominantly explored research theme in the field. Furthermore, “portfolio optimization”, “sentiment analysis”, “algorithmic trading”, and “crisis prediction” are found as recently emerged research areas.

Originality/value

To the best of the authors’ knowledge, the current study is a novel attempt that holistically assesses the existing literature on ANN applications throughout the entire domain of stock market. The main contribution of the current study lies in discussing the challenges along with the viable methodological solutions and providing application area-wise knowledge gaps for future studies.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 25 April 2024

Abdul-Manan Sadick, Argaw Gurmu and Chathuri Gunarathna

Developing a reliable cost estimate at the early stage of construction projects is challenging due to inadequate project information. Most of the information during this stage is…

Abstract

Purpose

Developing a reliable cost estimate at the early stage of construction projects is challenging due to inadequate project information. Most of the information during this stage is qualitative, posing additional challenges to achieving accurate cost estimates. Additionally, there is a lack of tools that use qualitative project information and forecast the budgets required for project completion. This research, therefore, aims to develop a model for setting project budgets (excluding land) during the pre-conceptual stage of residential buildings, where project information is mainly qualitative.

Design/methodology/approach

Due to the qualitative nature of project information at the pre-conception stage, a natural language processing model, DistilBERT (Distilled Bidirectional Encoder Representations from Transformers), was trained to predict the cost range of residential buildings at the pre-conception stage. The training and evaluation data included 63,899 building permit activity records (2021–2022) from the Victorian State Building Authority, Australia. The input data comprised the project description of each record, which included project location and basic material types (floor, frame, roofing, and external wall).

Findings

This research designed a novel tool for predicting the project budget based on preliminary project information. The model achieved 79% accuracy in classifying residential buildings into three cost_classes ($100,000-$300,000, $300,000-$500,000, $500,000-$1,200,000) and F1-scores of 0.85, 0.73, and 0.74, respectively. Additionally, the results show that the model learnt the contextual relationship between qualitative data like project location and cost.

Research limitations/implications

The current model was developed using data from Victoria state in Australia; hence, it would not return relevant outcomes for other contexts. However, future studies can adopt the methods to develop similar models for their context.

Originality/value

This research is the first to leverage a deep learning model, DistilBERT, for cost estimation at the pre-conception stage using basic project information like location and material types. Therefore, the model would contribute to overcoming data limitations for cost estimation at the pre-conception stage. Residential building stakeholders, like clients, designers, and estimators, can use the model to forecast the project budget at the pre-conception stage to facilitate decision-making.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 September 2023

Wei Shi, Jing Zhang and Shaoyi He

With the rapid development of short videos in China, the public has become accustomed to using short videos to express their opinions. This paper aims to solve problems such as…

116

Abstract

Purpose

With the rapid development of short videos in China, the public has become accustomed to using short videos to express their opinions. This paper aims to solve problems such as how to represent the features of different modalities and achieve effective cross-modal feature fusion when analyzing the multi-modal sentiment of Chinese short videos (CSVs).

Design/methodology/approach

This paper aims to propose a sentiment analysis model MSCNN-CPL-CAFF using multi-scale convolutional neural network and cross attention fusion mechanism to analyze the CSVs. The audio-visual and textual data of CSVs themed on “COVID-19, catering industry” are collected from CSV platform Douyin first, and then a comparative analysis is conducted with advanced baseline models.

Findings

The sample number of the weak negative and neutral sentiment is the largest, and the sample number of the positive and weak positive sentiment is relatively small, accounting for only about 11% of the total samples. The MSCNN-CPL-CAFF model has achieved the Acc-2, Acc-3 and F1 score of 85.01%, 74.16 and 84.84%, respectively, which outperforms the highest value of baseline methods in accuracy and achieves competitive computation speed.

Practical implications

This research offers some implications regarding the impact of COVID-19 on catering industry in China by focusing on multi-modal sentiment of CSVs. The methodology can be utilized to analyze the opinions of the general public on social media platform and to categorize them accordingly.

Originality/value

This paper presents a novel deep-learning multimodal sentiment analysis model, which provides a new perspective for public opinion research on the short video platform.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 July 2023

Nehal Elshaboury, Eslam Mohammed Abdelkader and Abobakr Al-Sakkaf

Modern human society has continuous advancements that have a negative impact on the quality of the air. Daily transportation, industrial and residential operations churn up…

Abstract

Purpose

Modern human society has continuous advancements that have a negative impact on the quality of the air. Daily transportation, industrial and residential operations churn up dangerous contaminants in our surroundings. Addressing air pollution issues is critical for human health and ecosystems, particularly in developing countries such as Egypt. Excessive levels of pollutants have been linked to a variety of circulatory, respiratory and nervous illnesses. To this end, the purpose of this research paper is to forecast air pollution concentrations in Egypt based on time series analysis.

Design/methodology/approach

Deep learning models are leveraged to analyze air quality time series in the 6th of October City, Egypt. In this regard, convolutional neural network (CNN), long short-term memory network and multilayer perceptron neural network models are used to forecast the overall concentrations of sulfur dioxide (SO2) and particulate matter 10 µm in diameter (PM10). The models are trained and validated by using monthly data available from the Egyptian Environmental Affairs Agency between December 2014 and July 2020. The performance measures such as determination coefficient, root mean square error and mean absolute error are used to evaluate the outcomes of models.

Findings

The CNN model exhibits the best performance in terms of forecasting pollutant concentrations 3, 6, 9 and 12 months ahead. Finally, using data from December 2014 to July 2021, the CNN model is used to anticipate the pollutant concentrations 12 months ahead. In July 2022, the overall concentrations of SO2 and PM10 are expected to reach 10 and 127 µg/m3, respectively. The developed model could aid decision-makers, practitioners and local authorities in planning and implementing various interventions to mitigate their negative influences on the population and environment.

Originality/value

This research introduces the development of an efficient time-series model that can project the future concentrations of particulate and gaseous air pollutants in Egypt. This research study offers the first time application of deep learning models to forecast the air quality in Egypt. This research study examines the performance of machine learning approaches and deep learning techniques to forecast sulfur dioxide and particular matter concentrations using standard performance metrics.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 22 March 2024

Rongxin Chen and Tianxing Zhang

In the global context, artificial intelligence (AI) technology and environmental, social and governance (ESG) have emerged as central drivers facilitating corporate transformation…

Abstract

Purpose

In the global context, artificial intelligence (AI) technology and environmental, social and governance (ESG) have emerged as central drivers facilitating corporate transformation and the business model revolution. This paper aims to investigate whether and how the application of AI enhances the ESG performance of enterprises.

Design/methodology/approach

This study uses panel data from Chinese A-share listed companies spanning the period from 2012 to 2022. Through a multivariate regression analysis, it examines the impact of AI on the ESG performance of enterprises.

Findings

The findings suggest that the application of AI in enterprises has a positive impact on ESG performance. Internal control systems within the organization and external information environments act as mediators in the relationship between AI and corporate ESG performance. Furthermore, corporate compliance plays a moderating role in the connection between AI and corporate ESG performance.

Originality/value

This paper underscores the pivotal role played by AI in enhancing corporate ESG performance. It explores the pathways to improving corporate ESG behavior from the perspectives of internal control and information environments. This discussion holds significant implications for advancing the application of AI in enterprises and enhancing their sustainable governance capabilities.

Details

Chinese Management Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 18 September 2023

Temitope Egbelakin, Temitope Omotayo, Olabode Emmanuel Ogunmakinde and Damilola Ekundayo

Flood preparedness and response from the perspective of community engagement mechanisms have been studied in scholarly articles. However, the differences in flood mitigation may…

Abstract

Purpose

Flood preparedness and response from the perspective of community engagement mechanisms have been studied in scholarly articles. However, the differences in flood mitigation may expose social and behavioural challenges to learn from. This study aimed to demonstrate how text mining can be applied in prioritising existing contexts in community-based and government flood mitigation and management strategies.

Design/methodology/approach

This investigation mined the semantics researchers ascribed to flood disasters and community responses from 2001 to 2022 peer-reviewed publications. Text mining was used to derive frequently used terms from over 15 publications in the Scopus database and Google Scholar search engine after an initial output of 268 peer-reviewed publications. The text-mining process applied the topic modelling analyses on the 15 publications using the R studio application.

Findings

Topic modelling applied through text mining clustered four (4) themes. The themes that emerged from the topic modelling process were building adaptation to flooding, climate change and resilient communities, urban infrastructure and community preparedness and research output for flood risk and community response. The themes were supported with geographical flood risk and community mitigation contexts from the USA, India and Nigeria to provide a broader perspective.

Originality/value

This study exposed the deficiency of “communication, teamwork, responsibility and lessons” as focal themes of flood disaster management and response research. The divergence in flood mitigation in developing nations as compared with developed nations can be bridged through improved government policies, technologies and community engagement.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 19 June 2023

Abdelrahman M. Farouk and Rahimi A. Rahman

Implementing building information modeling (BIM) in construction projects offers many benefits. However, the use of BIM in project cost management is still limited. This study…

Abstract

Purpose

Implementing building information modeling (BIM) in construction projects offers many benefits. However, the use of BIM in project cost management is still limited. This study aims to review the current trends in the application of BIM in project cost management.

Design/methodology/approach

This study systematically reviews the literature on the application of BIM in project cost management. A total of 46 related articles were identified and analyzed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses method.

Findings

Eighteen approaches to applying BIM in project cost management were identified. The approaches can be grouped into cost control and cost estimation. Also, BIM can be applied independently or integrated with other techniques. The integrated approaches for cost control include integration with genetic algorithms, Monte Carlo simulation, lean construction, integrated project delivery, neural network and value engineering. On the contrary, integrated approaches for cost estimation include integration with cost-plus pricing, discrepancy analysis, construction progress curves, estimation standards, algorithms, declarative mappings, life cycle sustainability assessment, ontology, Web-based frameworks and structured query language.

Originality/value

To the best of the authors’ knowledge, this study is the first to systematically review prior literature on the application of BIM in project cost management. As a result, the study provides a comprehensive understanding of the current state of the art and fills the literature gap. Researchers and industry professionals can use the study findings to increase the benefits of implementing BIM in construction projects.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 25 December 2023

Isaac Akomea-Frimpong, Jacinta Rejoice Ama Delali Dzagli, Kenneth Eluerkeh, Franklina Boakyewaa Bonsu, Sabastina Opoku-Brafi, Samuel Gyimah, Nana Ama Sika Asuming, David Wireko Atibila and Augustine Senanu Kukah

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of…

Abstract

Purpose

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of public–private partnership (PPP) infrastructure projects. Such conferences together with available project reports and empirical studies recommend project managers and practitioners to adopt smart technologies and develop robust measures to tackle climate risk exposure. Comparatively, artificial intelligence (AI) risk management tools are better to mitigate climate risk, but it has been inadequately explored in the PPP sector. Thus, this study aims to explore the tools and roles of AI in climate risk management of PPP infrastructure projects.

Design/methodology/approach

Systematically, this study compiles and analyses 36 peer-reviewed journal articles sourced from Scopus, Web of Science, Google Scholar and PubMed.

Findings

The results demonstrate deep learning, building information modelling, robotic automations, remote sensors and fuzzy logic as major key AI-based risk models (tools) for PPP infrastructures. The roles of AI in climate risk management of PPPs include risk detection, analysis, controls and prediction.

Research limitations/implications

For researchers, the findings provide relevant guide for further investigations into AI and climate risks within the PPP research domain.

Practical implications

This article highlights the AI tools in mitigating climate crisis in PPP infrastructure management.

Originality/value

This article provides strong arguments for the utilisation of AI in understanding and managing numerous challenges related to climate change in PPP infrastructure projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 April 2024

Shola Usharani, R. Gayathri, Uday Surya Deveswar Reddy Kovvuri, Maddukuri Nivas, Abdul Quadir Md, Kong Fah Tee and Arun Kumar Sivaraman

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for…

Abstract

Purpose

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for inspectors. Image-based automatic inspection of cracks can be very effective when compared to human eye inspection. With the advancement in deep learning techniques, by utilizing these methods the authors can create automation of work in a particular sector of various industries.

Design/methodology/approach

In this study, an upgraded convolutional neural network-based crack detection method has been proposed. The dataset consists of 3,886 images which include cracked and non-cracked images. Further, these data have been split into training and validation data. To inspect the cracks more accurately, data augmentation was performed on the dataset, and regularization techniques have been utilized to reduce the overfitting problems. In this work, VGG19, Xception and Inception V3, along with Resnet50 V2 CNN architectures to train the data.

Findings

A comparison between the trained models has been performed and from the obtained results, Xception performs better than other algorithms with 99.54% test accuracy. The results show detecting cracked regions and firm non-cracked regions is very efficient by the Xception algorithm.

Originality/value

The proposed method can be way better back to an automatic inspection of cracks in buildings with different design patterns such as decorated historical monuments.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Access

Year

Last 12 months (80)

Content type

Earlycite article (80)
1 – 10 of 80