Search results

1 – 10 of 53
Article
Publication date: 16 July 2024

Nahid Hasan and Sumon Saha

This study aims to investigate magnetohydrodynamic (MHD) conjugate pure mixed convection considering interior heat production and resistive heating inside a square closed/open…

Abstract

Purpose

This study aims to investigate magnetohydrodynamic (MHD) conjugate pure mixed convection considering interior heat production and resistive heating inside a square closed/open cavity featuring a rotating cylinder for aiding (clockwise) and opposing (counterclockwise) flow configurations. Moreover, the impacts of altering cylinder size and conductivity on the system’s overall performance to determine optimum conditions are examined in this investigation.

Design/methodology/approach

The closed chamber is differentially heated by keeping high and low temperatures at the vertical boundaries. In contrast, the open cavity has a heated left wall and an open right boundary. The Galerkin finite element method is used to solve the Navier–Stokes and the thermal energy equations, which construct the present study’s mathematical framework. Numerical simulations are conducted for the specified ranges of several controlling parameters: Reynolds (31.62 ≤ Re ≤ 1000), Grashof (103Gr ≤ 106) and Hartmann numbers (0 ≤ Ha ≤ 31.62), and volumetric heat generation coefficient (Δ = 0, 3).

Findings

When Gr, Re and Ha simultaneously increase, the average Nusselt number along the warmed boundary rises accordingly. Conversely, interior heat production lowers heat transmission within the computational domain, which is also monitored regarding mean fluid temperature, overall entropy production and thermal performance criterion. Finally, the open cavity confirms better thermal performance than the closed cavity.

Originality/value

Comprehending the impacts of the magnetic field, Joule heating, internal heat generation and enclosed or open boundary on pure MHD combined free-forced convective flow offers valuable understandings of temperature fluctuations, velocity propagations, heat transport and irretrievable energy loss in numerous engineering applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 August 2024

Yuhan Li, Qun Luo, Shiyu Zhao, Wenyan Qi, Zhong Huang and Guiming Mei

The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to…

Abstract

Purpose

The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to offer valuable insights for research concerning the adaptability of pantograph-catenary systems on double-stack high container transportation lines.

Design/methodology/approach

Eight pantograph models were formulated based on lines with the contact wire of 6,680 mm in height. The aerodynamic calculations were carried out using the SST k-ω separated vortex model. A more improved aerodynamic uplift force method was also presented. The change rule of the aerodynamic uplift force under different working heights of the pantograph was analyzed according to the transfer coefficients of the aerodynamic forces and moments.

Findings

The results show that the absolute values of the aerodynamic forces and moments of the upper and lower frame increase with the working height, whereas those of the collector head do not change. The absolute values of the transfer coefficients of the lower frame and link arm were significantly larger than those of the upper frame. Therefore, the absolute value of the aerodynamic uplift force increased and then decreased with the working height. The maximum value occurred at a working height of 2,400 mm.

Originality/value

A new method for calculating the aerodynamic uplift force of pantographs is proposed. The specifical change rule of the aerodynamic uplift force of the pantograph on double-stack high container transportation lines was determined from the perspective of the transfer coefficients of the aerodynamic forces and moments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 July 2024

Wei-Chao Yang, Guo-Zhi Li, E Deng, De-Hui Ouyang and Zhi-Peng Lu

Sustainable urban rail transit requires noise barriers. However, these barriers’ durability varies due to the differing aerodynamic impacts they experience. The purpose of this…

Abstract

Purpose

Sustainable urban rail transit requires noise barriers. However, these barriers’ durability varies due to the differing aerodynamic impacts they experience. The purpose of this paper is to investigate the aerodynamic discrepancies of trains when they meet within two types of rectangular noise barriers: fully enclosed (FERNB) and semi-enclosed with vertical plates (SERNBVB). The research also considers the sensitivity of the scale ratio in these scenarios.

Design/methodology/approach

A 1:16 scaled moving model test analyzed spatiotemporal patterns and discrepancies in aerodynamic pressures during train meetings. Three-dimensional computational fluid dynamics models, with scale ratios of 1:1, 1:8 and 1:16, used the improved delayed detached eddy simulation turbulence model and slip grid technique. Comparing scale ratios on aerodynamic pressure discrepancies between the two types of noise barriers and revealing the flow field mechanism were done. The goal is to establish the relationship between aerodynamic pressure at scale and in full scale.

Findings

The aerodynamic pressure on SERNBVB is influenced by the train’s head and tail waves, whereas for FERNB, it is affected by pressure wave and head-tail waves. Notably, SERNBVB's aerodynamic pressure is more sensitive to changes in scale ratio. As the scale ratio decreases, the aerodynamic pressure on the noise barrier gradually increases.

Originality/value

A train-meeting moving model test is conducted within the noise barrier. Comparison of aerodynamic discrepancies during train meets between two types of rectangular noise barriers and the relationship between the scale and the full scale are established considering the modeling scale ratio.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 August 2024

Md Atiqur Rahman

The investigation concentrated on studying a distinct category of tubular heat exchanger that uses swirling airflow over tube bundle maintained at constant heat flux. Swirl flow…

Abstract

Purpose

The investigation concentrated on studying a distinct category of tubular heat exchanger that uses swirling airflow over tube bundle maintained at constant heat flux. Swirl flow is achieved using a novel perforated baffle plate with rectangular openings and multiple adjustable opposite-oriented saw-tooth flow deflectors. These deflectors were strategically placed at the inlet of the heat exchanger to create a swirling flow downstream.

Design/methodology/approach

The custom-built axial flow heat exchanger consists of three baffle plates arranged longitudinally supporting tube bundle maintained at constant heat flux. The baffle plate equipped with saw-tooth flow deflector of various geometry represented by space height ratio(e/h). Next, ambient air was then directed over the tube bundle at varying Reynolds number and the effect of baffle spacing (PR), Space height ratio (e/h) and inclination angle(a) of deflectors on performance of heat exchanger was experimentally analyzed.

Findings

The heat transfer augmentation of heat exchanger for given operating condition is strongly dependent on geometry, inclination angle of deflector and baffle spacing.

Originality/value

An average improvement of 1.42 times in thermal enhancement factor was observed with inclination angle of 30°, space height ratio of 0.4 and a pitch ratio of 1.2 when compared to a heat exchanger without a baffle plate under similar operating conditions.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 September 2024

Fuchun Jia, Xianghuan Liu and Yao Fu

The purposes of this paper are optimization of high speed reducer in electric vehicles based on the analysis of lubrication and verification of simulation accuracy and…

Abstract

Purpose

The purposes of this paper are optimization of high speed reducer in electric vehicles based on the analysis of lubrication and verification of simulation accuracy and optimization results.

Design/methodology/approach

The traditional CFD method presents poor applicability to complex geometric problems due to grid deformity. Therefore, moving particle semi-implicit (MPS) method is applied in this study to simulate lubrication of the reducer and analyze the influence of input speed and lubrication system design on the distribution. According to the results, the reducer is optimized. Meanwhile, the experiments for lubrication and churning power loss is carried out to verify the accuracy of simulation and optimization effects.

Findings

The flow field of lubricant inside the reducer is obtained. The lubrication system of reducer needs to be improved. Simulation and experiment show that the optimization is sufficient and efficient.

Originality/value

According to the simulation of lubrication, the reducer is optimized. The lubrication experimental setup is established. The conclusion of paper can provide the method and tool for reducer in electric vehicle.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0123/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2024

Yongsheng Zhao, Jiaqing Luo, Ying Li, Caixia Zhang and Honglie Ma

The combination of improved PSO (IPSO) algorithm and artificial neural network (ANN) model for intelligent monitoring of the bearing performance of the hydrostatic turntable.

Abstract

Purpose

The combination of improved PSO (IPSO) algorithm and artificial neural network (ANN) model for intelligent monitoring of the bearing performance of the hydrostatic turntable.

Design/methodology/approach

This paper proposes an artificial neural network model based on IPSO algorithm for intelligent monitoring of hydrostatic turntables.

Findings

The theoretical model proposed in this paper improves the accuracy of the working performance of the static pressure turntable and provides a new direction for intelligent monitoring of the static pressure turntable. Therefore, the theoretical research in this paper is novel.

Originality/value

Theoretical novelties: an ANN model based on the IPSO algorithm is designed to monitor the load-bearing performance of a static pressure turntable intelligently; this study show that the convergence accuracy and convergence speed of the IPSO-NN model have been improved by 52.55% and 10%, respectively, compared to traditional training models; and the proposed model could be used to solve the multidimensional nonlinear problem in the intelligent monitoring of hydrostatic turntables.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0081/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 August 2024

H. Thameem Basha, Hyunju Kim and Bongsoo Jang

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or…

Abstract

Purpose

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or retrieval of energy occurs through the heating or cooling of either a liquid or a solid, without undergoing a phase change, within a sensible heat storage system. In a sensible packed bed thermal energy storage system, the structure comprises porous media that form the packed solid material, while fluid occupies the voids. Thus, a cavity, partially filled with a fluid layer and partially with a saturated porous layer, has become important in the investigation of natural convection heat transfer, carrying significant relevance within thermal energy storage systems. Motivated by these insights, the current investigation delves into the convection heat transfer driven by buoyancy and entropy generation within a partially porous cavity that is differentially heated, vertically layered and filled with a hybrid nanofluid.

Design/methodology/approach

The investigation encompasses two distinct scenarios. In the first instance, the porous layer is positioned next to the heated wall, while the opposite region consists of a fluid layer. In the second case, the layers switch places, with the fluid layer adjacent to the heated wall. The system of equations for fluid and porous media, along with appropriate initial and boundary conditions, is addressed using the finite difference method. The Tiwari–Das model is used in this investigation, and the viscosity and thermal conductivity are determined using correlations specific to spherical nanoparticles.

Findings

Comprehensive numerical simulations have been performed, considering controlling factors such as the Darcy number, nanoparticle volume fraction, Rayleigh number, bottom slit position and Hartmann number. The visual representation of the numerical findings includes streamlines, isotherms and entropy lines, as well as plots illustrating average entropy generation and the average Nusselt number. These representations aim to provide insight into the influence of these parameters across a spectrum of scenarios.

Originality/value

The computational outcomes indicate that with an increase in the Darcy number, the addition of 2.5% magnetite nanoparticles to the GO nanofluid results in an enhanced heat transfer rate, showing increases of 0.567% in Case 1 and 3.894% in Case 2. Compared with Case 2, Case 1 exhibits a 59.90% enhancement in heat transfer within the enclosure. Positioning the porous layer next to the partially cooled wall significantly boosts the average total entropy production, showing a substantial increase of 11.36% at an elevated Rayleigh number value. Positioning the hot slit near the bottom wall leads to a reduction in total entropy generation by 33.20% compared to its placement at the center and by 33.32% in comparison to its proximity to the top wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 July 2024

Abdulaziz Alsenafi, Fares Alazemi and M. Nawaz

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and…

Abstract

Purpose

To improve the thermal performance of base fluid, nanoparticles of three types are dispersed in the base fluid. A novel theory of non-Fourier heat transfer is used for design and development of models. The thermal performance of sample fluids is compared to determine which types of combination of nanoparticles are the best for an optimized enhancement in thermal performance of fluids. This article aims to: (i) investigate the impact of nanoparticles on thermal performance; and (ii) implement the Galerkin finite element method (GFEM) to thermal problems.

Design/methodology/approach

The mathematical models are developed using novel non-Fourier heat flux theory, conservation laws of computational fluid dynamics (CFD) and no-slip thermal boundary conditions. The models are approximated using thermal boundary layer approximations, and transformed models are solved numerically using GFEM. A grid-sensitivity test is performed. The accuracy, correction and stability of solutions is ensured. The numerical method adopted for the calculations is validated with published data. Quantities of engineering interest, i.e. wall shear stress, wall mass flow rate and wall heat flux, are calculated and examined versus emerging rheological parameters and thermal relaxation time.

Findings

The thermal relaxation time measures the ability of a fluid to restore its original thermal state, called thermal equilibrium and therefore, simulations have shown that the thermal relaxation time associated with a mono nanofluid has the most substantial effect on the temperature of fluid, whereas a ternary nanofluid has the smallest thermal relaxation time. A ternary nanofluid has a wider thermal boundary thickness in comparison with base and di- and mono nanofluids. The wall heat flux (in the case of the ternary nanofluids) has the most significant value compared with the wall shear stresses for the mono and hybrid nanofluids. The wall heat and mass fluxes have the highest values for the case of non-Fourier heat and mass diffusion compared to the case of Fourier heat and mass transfer.

Originality/value

An extensive literature review reveals that no study has considered thermal and concentration memory effects on transport mechanisms in fluids of cross-rheological liquid using novel theory of heat and mass [presented by Cattaneo (Cattaneo, 1958) and Christov (Christov, 2009)] so far. Moreover, the finite element method for coupled and nonlinear CFD problems has not been implemented so far. To the best of the authors’ knowledge for the first time, the dynamics of wall heat flow rate and mass flow rate under simultaneous effects of thermal and solute relaxation times, Ohmic dissipation and first-order chemical reactions are studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 September 2024

Madiha Ajmal, Rashid Mehmood, Noreen Sher Akbar and Taseer Muhammad

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a…

Abstract

Purpose

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a ciliated channel with electroosmosis.

Design/methodology/approach

This study applies a powerful mathematical model to examine the combined impacts of bio convection and electrokinetic forces on nanofluid flow. The presence of cilia, which are described as wave-like motions on the channel walls, promotes fluid propulsion, which improves mixing and mass transport. The velocity and dispersion of nanoparticles and microbes are modified by the inclusion of electroosmosis, which is stimulated by an applied electric field. This adds a significant level of complexity.

Findings

To ascertain their impact on flow characteristics, important factors such as bio convection Rayleigh number, Grashoff number, Peclet number and Lewis number are varied. The results demonstrate that while the gyrotactic activity of microorganisms contributes to the stability and homogeneity of the nanofluid distribution, electroosmotic forces significantly enhance fluid mixing and nanoparticle dispersion. This thorough study clarifies how to take advantage of electroosmosis and bio convection in ciliated micro channels to optimize nanofluid-based biomedical applications, such as targeted drug administration and improved diagnostic processes.

Originality/value

First paper discussed “Numerical Computation of Cilia Transport of Prandtl Nanofluid (Blood-Fe3O4) Enhancing Convective Heat Transfer along Micro Organisms under Electroosmotic effects in Wavy Capillaries”.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 July 2024

Maryam Fatima, Ayesha Sohail, Youming Lei, Sadiq M. Sait and R. Ellahi

Enzymes play a pivotal role in orchestrating essential biochemical processes and influencing various cellular activities in tissue. This paper aims to provide the process of…

Abstract

Purpose

Enzymes play a pivotal role in orchestrating essential biochemical processes and influencing various cellular activities in tissue. This paper aims to provide the process of enzyme diffusion within the tissue matrix and enhance the nano system performance by means of the effectiveness of enzymatic functions. The diffusion phenomena are also documented, providing chemical insights into the complex processes governing enzyme movement.

Design/methodology/approach

A computational analysis is used to develop and simulate an optimal control model using numerical algorithms, systematically regulating enzyme concentrations within the tissue scaffold.

Findings

The accompanying videographic footages offer detailed insights into the dynamic complexity of the system, enriching the reader’s understanding. This comprehensive exploration not only contributes valuable knowledge to the field but also advances computational analysis in tissue engineering and biomimetic systems. The work is linked to biomolecular structures and dynamics, offering a detailed understanding of how these elements influence enzymatic functions, ultimately bridging the gap between theoretical insights and practical implications.

Originality/value

A computational predictive model for nanozyme that describes the reaction diffusion dynamics process with enzyme catalysts is yet not available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 53