Search results

1 – 10 of over 6000
Article
Publication date: 13 June 2022

Wang Jianhong and Ricardo A. Ramirez-Mendoza

The purpose of this paper extends the authors’ previous contributions on aircraft system identification, such as open loop identification or closed loop identification, to cascade

Abstract

Purpose

The purpose of this paper extends the authors’ previous contributions on aircraft system identification, such as open loop identification or closed loop identification, to cascade system identification. Because the cascade system is one special network system, existing in lots of practical engineers, more unknown systems are needed to identify simultaneously within the statistical environment with the probabilistic noises. Consider this problem of cascade system identification, prediction error method is proposed to identify three unknown systems, which are parameterized by three unknown parameter vectors. Then the cascade system identification is transferred as one parameter identification problem, being solved by the online subgradient descent algorithm. Furthermore, the nonparametric estimation is proposed to consider the general case without any parameterized process. To make up the identification mission, model validation process is given to show the asymptotic interval of the identified parameter. Finally, simulation example confirms the proposed theoretical results.

Design/methodology/approach

Firstly, aircraft system identification is reviewed through the understanding about system identification and advances in control theory, then cascade system identification is introduced to be one special network system. Secondly, for the problem of cascade system identification, prediction error method and online subgradient decent algorithm are combined together to identify the cascade system with the parameterized systems. Thirdly from the point of more general completeness, another way is proposed to identify the nonparametric estimation, then model validation process is added to complete the whole identification mission.

Findings

This cascade system corresponds to one network system, existing in lots of practice, such as aircraft, ship and robot, so it is necessary to identify this cascade system, paving a way for latter network system identification. Parametric and nonparametric estimations are all studied within the statistical environment. Then research on bounded noise is an ongoing work.

Originality/value

To the best of the authors’ knowledge, research on aircraft system identification only concern on open loop and closed loop system identification, no any identification results about network system identification. This paper considers cascade system identification, being one special case on network system identification, so this paper paves a basic way for latter more advanced system identification and control theory.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 October 2018

Marcin Chodnicki, Katarzyna Bartnik, Miroslaw Nowakowski and Grzegorz Kowaleczko

The motivation to perform research on feedback control system for unmanned aerial vehicles, a fact that each quadrocopter is unstable.

Abstract

Purpose

The motivation to perform research on feedback control system for unmanned aerial vehicles, a fact that each quadrocopter is unstable.

Design/methodology/approach

For this reason, it is necessary to design a control system which is capable of making unmanned aerial vehicle vertical take-off and landing (UAV VTOL) stable and controllable. For this purpose, it was decided to use a feedback control system with cascaded PID controller. The main reason for using it was that PID controllers are simple to implement and do not use much hardware resources. Moreover, cascaded control systems allow to control object response using more parameters than in a standard PID control. STM32 microcontrollers were used to make a real control system. The rapid prototyping using Embedded Coder Toolbox, FreeRTOS and STM32 CubeMX was conducted to design the algorithm of the feedback control system with cascaded PID controller for unmanned aerial vehicle vertical take-off and landings (UAV VTOLs).

Findings

During research, an algorithm of UAV VTOL control using the feedback control system with cascaded PID controller was designed. Tests were performed for the designed algorithm in the model simulation in Matlab/Simulink and in the real conditions.

Originality/value

It has been proved that an additional control loop must have a full PID controller. Moreover, a new library is presented for STM32 microcontrollers made using the Embedded Coder Toolbox just for the research. This library enabled to use rapid prototyping while developing the control algorithms.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 March 2021

Bing Hua, Nan Zhang and Mohong Zheng

Taking into account the factors of torque saturation and angular velocity limitation during the actual attitude maneuver of the satellite, as well as the difficulty of parameter…

Abstract

Purpose

Taking into account the factors of torque saturation and angular velocity limitation during the actual attitude maneuver of the satellite, as well as the difficulty of parameter selection in the design of attitude control algorithm, the purpose of this paper is to propose a satellite magnetic/momentum wheel attitude control technology based on pigeon-inspired optimization (PIO) cascade-saturation control law optimization.

Design/methodology/approach

The optimal parameters are calculated through the PIO algorithm and then the parameters are used in the cascade-saturation control law to control the actuator findings-mathematical simulation results show that the cascade-saturation control law optimization algorithm based on PIO can shorten the adjustment time and reduce the steady-state error.

Findings

Compared with traditional attitude maneuver control with given parameters, the PIO algorithm can accurately calculate the optimal parameters needed to achieve the control objective and this method has better stability and higher accuracy.

Originality/value

The innovative PIO algorithm is used to calculate the optimal parameters, and the cascade saturation control law is used to control the actuator. Compared with the traditional algorithm, the regulation time is shortened and the steady-state error is reduced.

Details

World Journal of Engineering, vol. 18 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 July 2021

Tushar Vikas Bhaskarwar, Sumit Suhas Aole and Rajan Hari Chile

The purpose of this paper is to provide benefits for companies or organizations, which deal with fewer input-outputs and wanted to control their industrial processes remotely with…

Abstract

Purpose

The purpose of this paper is to provide benefits for companies or organizations, which deal with fewer input-outputs and wanted to control their industrial processes remotely with a robust control strategy.

Design/methodology/approach

In this paper, an active disturbance rejection control (ADRC) strategy is used for the two tank level process plant and it is remotely monitored with the industrial internet of things technology. The disturbances in a primary and secondary loop of the cascade process, which are affecting the overall settling time (ts) of the process, are eliminated by using the proposed, ADRC-ADRC structure in the cascade loop. The stability of the proposed controller is presented with Hurwitz’s stability criteria for selecting gains of observers. The results of the proposed controller are compared with the existing active disturbance rejection control-proportional (ADRC-P) and proportional-integral derivative-proportional (PID-P)-based controller by experimental validation.

Findings

It is observed that the settling time (ts) in the case of the proposed controller is improved by 60% and 55% in comparison to PID-P and ADRC-P, respectively. The level process is interfaced with an industrial controller and real-time data acquired in matrix laboratory (MATLAB), which acted as a remote monitoring platform for the cascade process.

Originality/value

The proposed controller is designed to provide robustness against disturbance and parameter uncertainty. This paper provides an alternate way for researchers who are using MATLAB and ThingSpeak cloud server as a tool for the implementation.

Article
Publication date: 29 April 2021

Ayaz Ahmed Hoshu, Liuping Wang, Alex Fisher and Abdul Sattar

Despite of the numerous characteristics of the multirotor unmanned aircraft systems (UASs), they have been termed as less energy-efficient compared to fixed-wing and helicopter…

Abstract

Purpose

Despite of the numerous characteristics of the multirotor unmanned aircraft systems (UASs), they have been termed as less energy-efficient compared to fixed-wing and helicopter counterparts. The purpose of this paper is to explore a more efficient multirotor configuration and to provide the robust and stable control system for it.

Design/methodology/approach

A heterogeneous multirotor configuration is explored in this paper, which employs a large rotor at the centre to provide majority of lift and three small tilted booms rotors to provide the control. Design provides the combined characteristics of both quadcopters and helicopters in a single UAS configuration, providing endurance of helicopters keeping the manoeuvrability, simplicity and control of quadcopters. In this paper, rotational as well as translational dynamics of the multirotor are explored. Cascade control system is designed to provide an effective solution to control the attitude, altitude and position of the rotorcraft.

Findings

One of the challenging tasks towards successful flight of such a configuration is to design a stable and robust control system as it is an underactuated system possessing complex non-linearities and coupled dynamics. Cascaded proportional integral (PI) control approach has provided an efficient solution with stable control performance. A novel motor control loop is implemented to ensure enhanced disturbance rejection, which is also validated through Dryden turbulence model and 1-cosine gust model.

Originality/value

Robustness and stability of the proposed control structure for such a dynamically complex UAS configuration is demonstrated with stable attitude and position performance, reference tracking and enhanced disturbance rejection.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 22 March 2019

Zilai Zhang, Shusheng Zang and Bing Ge

This paper aims to develop a dynamic performance model of three-shaft gas turbine for electricity generation and to study a multi-loop control strategy of three-shaft gas turbine…

Abstract

Purpose

This paper aims to develop a dynamic performance model of three-shaft gas turbine for electricity generation and to study a multi-loop control strategy of three-shaft gas turbine for electricity generation.

Design/methodology/approach

In this paper, the dynamic performance model of the three-shaft gas turbine is established and developed. A novel approach, variable partial differential coefficient deviation linearization method is used to simulate the dynamic performance of the three-shaft gas turbine. Single-loop control system, feed-forward feedback control system and cascade system are assessed to control the engine during transient operation.

Findings

A novel approach, variable partial differential coefficient deviation linearization method is used to simulate the dynamic performance of the three-shaft gas turbine. According to the results shown, the cascade control system is most satisfactory due to its fastest response and the best stability and robustness.

Originality/value

The method of variable partial linearization is adopted to make the dynamic simulation of the model achieve higher precision, better steady state and less computation time. This paper provides a theoretical study for the multi-loop control system of a marine three-shaft gas turbine.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 January 2022

Mohd Atif Siddiqui, Md Nishat Anwar and Shahedul Haque Laskar

This paper aims to present an efficient and simplified proportional-integral/proportional-integral and derivative controller design method for the higher-order stable and…

Abstract

Purpose

This paper aims to present an efficient and simplified proportional-integral/proportional-integral and derivative controller design method for the higher-order stable and integrating processes with time delay in the cascade control structure (CCS).

Design/methodology/approach

Two approaches based on model matching in the frequency domain have been proposed for tuning the controllers of the CCS. The first approach is based on achieving the desired load disturbance rejection performance, whereas the second approach is proposed to achieve the desired setpoint performance. In both the approaches, matching between the desired model and the closed-loop system with the controller is done at a low-frequency point. Model matching at low-frequency points yields a linear algebraic equation and the solution to these equations yields the controller parameters.

Findings

Simulations have been conducted on several examples covering high order stable, integrating, double integrating processes with time delay and nonlinear continuous stirred tank reactor. The performance of the proposed scheme has been compared with recently reported work having modified cascade control configurations, sliding mode control, model predictive control and fractional order control. The performance of both the proposed schemes is either better or comparable with the recently reported methods. However, the proposed method based on desired load disturbance rejection performance outperforms among all these schemes.

Originality/value

The main advantages of the proposed approaches are that they are directly applicable to any order processes, as they are free from time delay approximation and plant order reduction. In addition to this, the proposed schemes are capable of handling a wide range of different dynamical processes in a unified way.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 October 2017

Fiaz Ahmad, Akhtar Rasool, Esref Emre Ozsoy, Asif Sabanoviç and Meltem Elitas

This paper aims to propose a robust cascaded controller based on proportional-integral (PI) and continuous sliding mode control.

Abstract

Purpose

This paper aims to propose a robust cascaded controller based on proportional-integral (PI) and continuous sliding mode control.

Design/methodology/approach

Cascaded control structure is an attractive control scheme for DC-DC power converters. It has a two-loop structure where the outer loop contains PI controller and the inner loop uses sliding mode control (SMC). This structure thus combines the merits of both the control schemes. However, there are some issues that have prohibited its adoption in industry, the discontinuous nature of SMC which leads to variable switching frequency operation and is hard to realize practically. This paper attempts to overcome this issue by changing the discontinuous functionality of SMC to continuous by utilizing the concept of equivalent control.

Findings

The robustness of the controller designed is verified by considering various cases, namely, ideal case with no uncertainties, sudden variation of input supply voltage, load resistance, reference voltage, circuit-parameters and for noise disturbance. The controller effectiveness is validated by simulating the DC-DC boost and Cuk converters in SimPowerSystems toolbox of MATLAB/Simulink. It is shown that the performance of the proposed controller is satisfactory, and both reference output voltage and inductor current are tracked with little or no sensitivity to disturbances.

Originality/value

The results for various scenarios are interesting and show that the controller works quite satisfactorily for all the simulated uncertainties.

Details

World Journal of Engineering, vol. 14 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 November 2022

Fan Xie, Xinyue Geng, Guozheng Li, Huayv Ji and Zhenxiong Luo

Cascaded DC-DC converters system is the main structure of distributed power system, and it has complex nonlinear phenomena during operation, which affect the power quality…

Abstract

Purpose

Cascaded DC-DC converters system is the main structure of distributed power system, and it has complex nonlinear phenomena during operation, which affect the power quality. Therefore, the dynamic behavior of the cascaded buck converter and boost converter system, as one of the typical cascaded DC-DC converters systems is analyzed.

Design/methodology/approach

Firstly, the studied cascaded system of the buck converter with peak current control and the boost converter with PI current control is introduced and its discrete modeling is built. Then, the Jacobian matrix of the cascaded system is calculated to research the stability when the parameter change. Finally, simulation by PSIM and experiments are carried out to verify the theoretical analysis.

Findings

The coexistence of fast and slow time scale bifurcations with the changes of reference current and input voltage are studied in the cascaded system, and using simulation analysis to further study the sensitivity of the inductor current of the front-stage converter and back-stage converter to different parameters.

Originality/value

A discrete model of the cascaded buck converter and boost converter system is established, and its dynamic behavior is analyzed in detail for the first time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 October 2013

Gang Zhang, Jianhua Wu, Pinkuan Liu and Han Ding

Based on the inverse kinematics and task space dynamic model, this paper aims to design a high-precision trajectory tracking controller for a 2-DoF translational parallel…

Abstract

Purpose

Based on the inverse kinematics and task space dynamic model, this paper aims to design a high-precision trajectory tracking controller for a 2-DoF translational parallel manipulator (TPM) driven by linear motors.

Design/methodology/approach

The task space dynamic model of a 2-DoF TPM is derived using Lagrangian equation of the first type. A task space dynamic model-based feedforward controller (MFC) is designed, which is combined with a cascade PID/PI controller and velocity feedforward controller (VFC) to construct a hybrid PID/PI+VFC/MFC controller. The hybrid controller is implemented in MATLAB/dSPACE real-time control platform. Experiment results are given to validate the effectiveness and industrial applicability of the hybrid controller.

Findings

The MFC can compensate for the nonlinear dynamic characteristics of a 2-DoF TPM and achieve better tracking performance than the conventional acceleration feedforward controller (AFC).

Originality/value

The task space dynamic model-based hybrid PID/PI+VFC/MFC controller is proposed for a 2-DoF linear-motor-driven TPM, which reduces the tracking error by at least 15 percent compared with conventional hybrid PID/PI+VFC/AFC controller. This control scheme can be extended to high-speed and high-precision trajectory tracking control of other parallel manipulators by reprogramming the feedforward signals of traditional cascade PID/PI controller.

Details

Industrial Robot: An International Journal, vol. 40 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 6000