Search results

1 – 10 of 805
Article
Publication date: 26 September 2023

Ruqing Bai, Hakim Naceur, Jinglei Zhao, Jin Yi, Jie Ma, Huayan Pu and Jun Luo

In this paper, the standard Peridynamic Timoshenko beam model accounting for the shear deformation is chosen to describe the thick beam kinematics. Unfortunately, when applied to…

Abstract

Purpose

In this paper, the standard Peridynamic Timoshenko beam model accounting for the shear deformation is chosen to describe the thick beam kinematics. Unfortunately, when applied to very thin beam structures, the standard Peridynamics (PD) encounters the shear locking phenomenon, leading to incorrect solutions.

Design/methodology/approach

PD differs from classical continuum mechanics and other nonlocal theories that do not involve spatial derivatives of the displacement field. PD is based on the integral equation instead of differential equations to handle discontinuities and other singularities.

Findings

The shear locking can be successfully alleviated using the developed selective integration method. In particular, this technique has been implemented in the standard PD, which allows an accurate result for a wide range of slenderness from very thin to thick (10 < L/t < 103) structures. It can also accelerate the computational time for particular dynamic problems using fewer neighboring integration particles. Several numerical examples are solved to demonstrate the effectiveness of the proposed method for modeling beam structures.

Originality/value

The paper highlights the severe shear locking phenomenon in the Peridynamic Timoshenko beam available in the literature, especially for very thin structures. A new alternative for the alleviation of shear locking in the Peridynamic Timoshenko beam, using selective integration. Hence the developed Peridynamic Timoshenko beam model is effective for thin and thick structures. A new peridynamic formulation for the low-velocity impact beam models is presented and validated.

Highlights

  1. The paper highlights the severe shear locking phenomenon in the Peridynamic Timoshenko beam proposed in the literature, especially for very thin structures.

  2. The developed Peridynamic Timoshenko beam model based on selective integration is effective for thin and thick structures.

  3. A new peridynamic formulation for the low-velocity impact beam models is presented and validated.

The paper highlights the severe shear locking phenomenon in the Peridynamic Timoshenko beam proposed in the literature, especially for very thin structures.

The developed Peridynamic Timoshenko beam model based on selective integration is effective for thin and thick structures.

A new peridynamic formulation for the low-velocity impact beam models is presented and validated.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Book part
Publication date: 13 November 2023

Jelena Balabanić Mavrović

Abstract

Details

Eating Disorders in a Capitalist World
Type: Book
ISBN: 978-1-80455-787-7

Article
Publication date: 8 December 2023

Indranil Banik, Arup Kumar Nandi and Bittagopal Mondal

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road…

Abstract

Purpose

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road conditions do not exhibit excessive variations. This will intend for an appropriate allocation of brake force distribution (BFD) to provide dynamic stability to the vehicle during braking.

Design/methodology/approach

Two techniques are presented (with and without wheel slip) to satisfy both brake stability and performance while accommodating variations in load sharing and road friction coefficient. Based on parametric optimization of the design variables of hydraulic brake using evolutionary algorithm, taking into account both the laden and unladen circumstances simultaneously, this research develops an improved model for computing and simulating the BFD applied to commercial and passenger vehicles.

Findings

The optimal parameter values defining the braking system have been identified, resulting in effective β = 0.695 which enhances the brake forces at respective axles. Nominal slip of 3.42% is achieved with maximum deceleration of 5.72 m/s2 maintaining directional stability during braking. The results obtained from both the methodologies are juxtaposed and assessed governing the vehicle stability in straight line motion to prevent wheel lock.

Originality/value

Optimization results establish the practicality, efficacy and applicability of the proposed approaches. The findings provide valuable insights for the design and optimization of hydraulic drum brake systems in modern automobiles, which can lead to safer and more efficient braking systems.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 October 2023

Ning Zhang, Hong Zheng, Chi Yuan and Wenan Wu

This article aims to present a direct solution to handle linear constraints in finite element (FE) analysis without penalties or the Lagrange multipliers introduced.

Abstract

Purpose

This article aims to present a direct solution to handle linear constraints in finite element (FE) analysis without penalties or the Lagrange multipliers introduced.

Design/methodology/approach

First, the system of linear equations corresponding to the linear constraints is solved for the leading variables in terms of the free variables and the constants. Then, the reduced system of equilibrium equations with respect to the free variables is derived from the finite-dimensional virtual work equation. Finally, the algorithm is designed.

Findings

The proposed procedure is promising in three typical cases: (1) to enforce displacement constraints in any direction; (2) to implement local refinements by allowing hanging nodes from element subdivision and (3) to treat non-matching grids of distinct parts of the problem domain. The procedure is general and suitable for 3D non-linear analyses.

Research limitations/implications

The algorithm is fitted only to the Galerkin-based numerical methods.

Originality/value

The proposed procedure does not need Lagrange multipliers or penalties. The tangential stiffness matrix of the reduced system of equilibrium equations reserves positive definiteness and symmetry. Besides, many contemporary Galerkin-based numerical methods need to tackle the enforcement of the essential conditions, whose weak forms reduce to linear constraints. As a result, the proposed procedure is quite promising.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 March 2024

Heji Zhang, Dezhao Lu, Wei Pan, Xing Rong and Yongtao Zhang

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping…

Abstract

Purpose

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping characteristics, and provides certain beneficial guidance for the design of large-span closed hydrostatic guideway on the basis of providing a large vertical load bearing capacity.

Design/methodology/approach

The Reynolds’ equation and flow continuity equation are solved simultaneously by the finite difference method, and the perturbation method and the finite disturbance method is used for calculating the dynamic characteristics. The static and dynamic characteristics, including recess pressure, flow of lubricating oil, carrying capacity, pitch moment, yaw moment, dynamic stiffness and damping, are comprehensively analyzed.

Findings

The designed closed hydrostatic guideway has the ability to resist large lateral load, pitch moment and yaw moment and has good stiffness and damping characteristics, on the basis of being able to provide large vertical carrying capacity, which can meet the application requirements of heavy two-plate injection molding machine (TPIMM).

Originality/value

This paper researches static and dynamic characteristics of a large-span six-slider closed hydrostatic guideway used in heavy TPIMM, emphatically considering pitch moment and yaw moment. Some useful guidance is given for the design of large-span closed hydrostatic guideway.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2024

Zhongfeng Sun, Guojun Ji and Kim Hua Tan

This paper aims to study the joint decision making of advance selling and service cancelation for service provides with limited capacity when consumers are overconfident.

Abstract

Purpose

This paper aims to study the joint decision making of advance selling and service cancelation for service provides with limited capacity when consumers are overconfident.

Design/methodology/approach

For the case in which consumers encounter uncertainties about product valuation and consumption states in the advance period and are overconfident about the probability of a good state, we study how the service provider chooses the optimal sales strategy among the non-advance selling strategy, the advance selling and disallowing cancelation strategy, and the advance selling and allowing cancelation strategy. We also discuss how overconfidence influences the service provider’s decision making.

Findings

The results show that when service capacity is sufficient, the service provider should adopt advance selling and disallow cancelation; when service capacity is insufficient, the service provider should still implement advance selling but allow cancelation; and when service capacity is extremely insufficient, the service provider should offer spot sales. Moreover, overconfidence weakens the necessity to allow cancelation under sufficient service capacity and enhances it under insufficient service capacity but is always advantageous to advance selling.

Practical implications

The obtained results provide managerial insights for service providers to make advance selling decisions.

Originality/value

This paper is among the first to explore the effect of consumers’ overconfidence on the joint decision of advance selling and service cancelation under capacity constraints.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Content available
Book part
Publication date: 1 December 2023

Gail Anne Mountain

Abstract

Details

Occupational Therapy With Older People into the Twenty-First Century
Type: Book
ISBN: 978-1-83753-043-4

Article
Publication date: 17 April 2024

Bingwei Gao, Hongjian Zhao, Wenlong Han and Shilong Xue

This study proposes a predictive neural network model reference decoupling control method for the coupling problem between the leg joints of hydraulic quadruped robots, and…

Abstract

Purpose

This study proposes a predictive neural network model reference decoupling control method for the coupling problem between the leg joints of hydraulic quadruped robots, and verifies its decoupling effect..

Design/methodology/approach

The machine–hydraulic cross-linking coupling is studied as the coupling behavior of the hydraulically driven quadruped robot, and the mechanical dynamics coupling force of the robot system is controlled as the disturbance force of the hydraulic system through the Jacobian matrix transformation. According to the principle of multivariable decoupling, a prediction-based neural network model reference decoupling control method is proposed; each module of the control algorithm is designed one by one, and the stability of the system is analyzed by the Lyapunov stability theorem.

Findings

The simulation and experimental research on the robot joint decoupling control method is carried out, and the prediction-based neural network model reference decoupling control method is compared with the decoupling control method without any decoupling control method. The results show that taking the coupling effect experiment between the hip joint and knee joint as an example, after using the predictive neural network model reference decoupling control method, the phase lag of the hip joint response line was reduced from 20.3° to 14.8°, the amplitude attenuation was reduced from 1.82% to 0.21%, the maximum error of the knee joint coupling line was reduced from 0.67 mm to 0.16 mm and the coupling effect between the hip joint and knee joint was reduced from 1.9% to 0.48%, achieving good decoupling.

Originality/value

The prediction-based neural network model reference decoupling control method proposed in this paper can use the neural network model to predict the next output of the system according to the input and output. Finally, the weights of the neural network are corrected online according to the predicted output and the given reference output, so that the optimization index of the neural network decoupling controller is extremely small, and the purpose of decoupling control is achieved.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 805