Search results

1 – 10 of over 2000
Article
Publication date: 21 February 2024

Nehal Elshaboury, Tarek Zayed and Eslam Mohammed Abdelkader

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective…

Abstract

Purpose

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.

Design/methodology/approach

As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.

Findings

Analytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.

Originality/value

It can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 November 2023

Ehsan Goudarzi, Hamid Esmaeeli, Kia Parsa and Shervin Asadzadeh

The target of this research is to develop a mathematical model which combines the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) and the Multi-Skilled…

Abstract

Purpose

The target of this research is to develop a mathematical model which combines the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) and the Multi-Skilled Resource-Constrained Project Scheduling Problem (MSRCPSP). Due to the importance of resource management, the proposed formulation comprises resource leveling considerations as well. The model aims to simultaneously optimize: (1) the total time to accomplish all projects and (2) the total deviation of resource consumptions from the uniform utilization levels.

Design/methodology/approach

The K-Means (KM) and Fuzzy C-Means (FCM) clustering methods have been separately applied to discover the clusters of activities which have the most similar resource demands. The discovered clusters are given to the scheduling process as priori knowledge. Consequently, the execution times of the activities with the most common resource requests will not overlap. The intricacy of the problem led us to incorporate the KM and FCM techniques into a meta-heuristic called the Bi-objective Symbiosis Organisms Search (BSOS) algorithm so that the real-life samples of this problem could be solved. Therefore, two clustering-based algorithms, namely, the BSOS-KM and BSOS-FCM have been developed.

Findings

Comparisons between the BSOS-KM, BSOS-FCM and the BSOS method without any clustering approach show that the clustering techniques could enhance the optimization process. Another hybrid clustering-based methodology called the NSGA-II-SPE has been added to the comparisons to evaluate the developed resource leveling framework.

Practical implications

The practical importance of the model and the clustering-based algorithms have been demonstrated in planning several construction projects, where multiple water supply systems are concurrently constructed.

Originality/value

Reviewing the literature revealed that there was a need for a hybrid formulation that embraces the characteristics of the RCMPSP and MSRCPSP with resource leveling considerations. Moreover, the application of clustering algorithms as resource leveling techniques was not studied sufficiently in the literature.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 22 March 2024

Sanaz Khalaj Rahimi and Donya Rahmani

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on…

30

Abstract

Purpose

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on flight range. In HTDRP-DC, trucks can select and transport various drones to LDs to reduce deprivation time. This study estimates the nonlinear deprivation cost function using a linear two-piece-wise function, leading to MILP formulations. A heuristic-based Benders Decomposition approach is implemented to address medium and large instances. Valid inequalities and a heuristic method enhance convergence boundaries, ensuring an efficient solution methodology.

Design/methodology/approach

Research has yet to address critical factors in disaster logistics: minimizing the social and economic costs simultaneously and using drones in relief distribution; deprivation as a social cost measures the human suffering from a shortage of relief supplies. The proposed hybrid truck-drone routing problem minimizing deprivation cost (HTDRP-DC) involves distributing relief supplies to dispersed demand nodes with undamaged (LDs) or damaged (DNs) access roads, utilizing multiple trucks and diverse drones. A Benders Decomposition approach is enhanced by accelerating techniques.

Findings

Incorporating deprivation and economic costs results in selecting optimal routes, effectively reducing the time required to assist affected areas. Additionally, employing various drone types and their reuse in damaged nodes reduces deprivation time and associated deprivation costs. The study employs valid inequalities and the heuristic method to solve the master problem, substantially reducing computational time and iterations compared to GAMS and classical Benders Decomposition Algorithm. The proposed heuristic-based Benders Decomposition approach is applied to a disaster in Tehran, demonstrating efficient solutions for the HTDRP-DC regarding computational time and convergence rate.

Originality/value

Current research introduces an HTDRP-DC problem that addresses minimizing deprivation costs considering the vehicle’s arrival time as the deprivation time, offering a unique solution to optimize route selection in relief distribution. Furthermore, integrating heuristic methods and valid inequalities into the Benders Decomposition approach enhances its effectiveness in solving complex routing challenges in disaster scenarios.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 15 June 2022

Alina Steblyanskaya, Mingye Ai, Artem Denisov, Olga Efimova and Maksim Rybachuk

Understanding China's carbon dioxide (C…

Abstract

Purpose

Understanding China's carbon dioxide (CO2) emission status is crucial for getting Carbon Neutrality status. The purpose of the paper is to calculate two possible scenarios for CO2 emission distribution and calculated input-output flows of CO2 emissions for every 31 China provinces for 2012, 2015 and 2017 years.

Design/methodology/approach

In this study using the input and output (IO) table's data for the selected years, the authors found the volume of CO2 emissions per one Yuan of revenue for the industry in 2012 and the coefficient of emission reduction compared to 2012.

Findings

Results show that in the industries with a huge volume of CO2 emissions, such as “Mining and washing of coal”, the authors cannot observe the reduction processes for years. Industries where emissions are being reduced are “Processing of petroleum, coking, nuclear fuel”, “Production and distribution of electric power and heat power”, “Agriculture, Forestry, Animal Husbandry and Fishery”. For the “construction” industry the situation with emissions did not change.

Originality/value

“Transport, storage, and postal services” and “Smelting and processing of metals” industries in China has the second place concerning emissions, but over the past period, emissions have been sufficiently reduced. “Construction” industry produces a lot of emissions, but this industry does not carry products characterized by large emissions from other industries. Authors can observe that Jiangsu produces a lot of CO2 emissions, but they do not take products characterized by significant emissions from other provinces. Shandong produces a lot of emissions and consumes many of products characterized by large emissions from other provinces. However, Shandong showed a reduction in CO2 emissions from 2012 to 2017.

Details

PSU Research Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2399-1747

Keywords

Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 4 May 2021

Xiaowei Ma, Muhammad Shahbaz and Malin Song

The purpose of this paper is to analyze the impact of the off-office audit of natural resource assets on the prevention and control of water pollution against a background of big…

Abstract

Purpose

The purpose of this paper is to analyze the impact of the off-office audit of natural resource assets on the prevention and control of water pollution against a background of big data using a differences-in-differences model.

Design/methodology/approach

This study constructs a differences-in-differences model to evaluate the policy effects of off-office audit based on panel data from 11 cities in Anhui Province, China, from 2011 to 2017, and analyzes the dynamic effect of the audit and intermediary effect of industrial structure.

Findings

The implementation of the audit system can effectively reduce water pollution. Dynamic effect analysis showed that the audit policy can not only improve the quality of water resources but can also have a cumulative effect over time. That is, the prevention and control effect on water pollution is getting stronger and stronger. The results of the robustness test verified the effectiveness of water pollution prevention and control. However, the results of the influence mechanism analysis showed that the mediating effect of the industrial structure was not obvious in the short term.

Practical implications

These findings shed light on the effect of the off-office audit of natural resource assets on the prevention and control of water pollution, and provide a theoretical basis for the formulation of relevant environmental policies. Furthermore, these findings show that the implementation of the audit system can effectively reduce water pollution, which has practical significance for the sustainable development of China's economy against the background of big data.

Originality/value

This study quantitatively analyzes the policy effect of off-office auditing from the perspective of water resources based on a big data background, which differs from the existing research that mainly focuses on basic theoretical analysis.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 8 May 2024

Mengyao Fan, Xiaojing Ma, Lin Li, Xinpeng Xiao and Can Cheng

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle…

Abstract

Purpose

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle hydrodynamics (SPH) method. The purpose of this paper is to present the mechanism of the water treatment problem of the falling film evaporation for the high salinity mine water in Xinjiang region of China.

Design/methodology/approach

To effectively characterize the phase transition problem, the particle splitting and merging techniques are introduced. And the particle absorbing layer is proposed to improve the nonphysical aggregation phenomenon caused by the continuous splitting of gas phase particles. The multiresolution model and the artificial viscosity are adopted.

Findings

The SPH model is validated qualitatively with experiment results and then applied to the evaporation of the droplet impact on the liquid film. It is shown that the larger single droplet initial velocity and the smaller single droplet initial temperature difference between the droplet and liquid film improve the liquid film evaporation. The heat transfer effect of a single droplet is preferable to that of multiple droplets.

Originality/value

A multiphase SPH model for evaporation after the droplet impact on the liquid film is developed and validated. The effects of different factors on liquid film evaporation, including single droplet initial velocity, single droplet initial temperature and multiple droplets are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2021

Željko Stević, Çağlar Karamaşa, Ezgi Demir and Selçuk Korucuk

Forests are negatively affected from rapid world population increase and industrialization that create intense pressures on natural resources and the possibility of an achieving…

Abstract

Purpose

Forests are negatively affected from rapid world population increase and industrialization that create intense pressures on natural resources and the possibility of an achieving circular economy. Forests can be considered as essential resources for providing sustainable society and meeting the requirements of future generations and circular economy. Therefore sustainable production tools as part of circular economy can be handled as one of the basic indicators for achieving circular economy. Accordingly the main purpose of this study is developing a novel rough – fuzzy multi-criteria decision-making model (MCDM) for evaluation sustainable production for forestry firms in Eastern Black Sea Region.

Design/methodology/approach

For determining 18 criteria weights a novel Rough PIPRECIA (PIvot Pairwise RElative Criteria Importance Assessment) method is developed. Eight decision-makers (DMs) participated in the research, and to obtain group rough decision matrix, rough Dombi weighted geometric averaging (RNDWGA) operator has been applied. For evaluation forestry firms fuzzy MARCOS (Measurement of alternatives and ranking according to COmpromise solution) method was utilized.

Findings

After application developed model the fourth alternative was found as the best. Sensitivity analysis and comparison were made to present the applicability of this method.

Originality/value

Development of novel integrated Rough PIPRECIA-Fuzzy MARCOS model with emphasis on developing new Rough PIPRECIA method.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Open Access
Article
Publication date: 28 July 2023

Karunamunige Sandun Madhuranga Karunamuni, Ekanayake Mudiyanselage Kapila Bandara Ekanayake, Subodha Dharmapriya and Asela Kumudu Kulatunga

The purpose of this study is to develop a novel general mathematical model to find the optimal product mix of commercial graphite products, which has a complex production process…

Abstract

Purpose

The purpose of this study is to develop a novel general mathematical model to find the optimal product mix of commercial graphite products, which has a complex production process with alternative sub-processes in the graphite mining production process.

Design/methodology/approach

The network optimization was adopted to model the complex graphite mining production process through the optimal allocation of raw graphite, byproducts, and saleable products with comparable sub-processes, which has different processing capacities and costs. The model was tested on a selected graphite manufacturing company, and the optimal graphite product mix was determined through the selection of the optimal production process. In addition, sensitivity and scenario analyses were carried out to accommodate uncertainties and to facilitate further managerial decisions.

Findings

The selected graphite mining company mines approximately 400 metric tons of raw graphite per month to produce ten types of graphite products. According to the optimum solution obtained, the company should produce only six graphite products to maximize its total profit. In addition, the study demonstrated how to reveal optimum managerial decisions based on optimum solutions.

Originality/value

This study has made a significant contribution to the graphite manufacturing industry by modeling the complex graphite mining production process with a network optimization technique that has yet to be addressed at this level of detail. The sensitivity and scenario analyses support for further managerial decisions.

Details

International Journal of Industrial Engineering and Operations Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 23 April 2024

Yong Liu, Xue-ge Guo, Qin Jiang and Jing-yi Zhang

We attempt to construct a grey three-way conflict analysis model with constraints to deal with correlated conflict problems with uncertain information.

Abstract

Purpose

We attempt to construct a grey three-way conflict analysis model with constraints to deal with correlated conflict problems with uncertain information.

Design/methodology/approach

In order to address these correlated conflict problems with uncertain information, considering the interactive influence and mutual restraints among agents and portraying their attitudes toward the conflict issues, we utilize grey numbers and three-way decisions to propose a grey three-way conflict analysis model with constraints. Firstly, based on the collected information, we introduced grey theory, calculated the degree of conflict between agents and then analyzed the conflict alliance based on the three-way decision theory. Finally, we designed a feedback mechanism to identify key agents and key conflict issues. A case verifies the effectiveness and practicability of the proposed model.

Findings

The results show that the proposed model can portray their attitudes toward conflict issues and effectively extract conflict-related information.

Originality/value

By employing this approach, we can provide the answers to Deja’s fundamental questions regarding Pawlak’s conflict analysis: “what are the underlying causes of conflict?” and “how can a viable consensus strategy be identified?”

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 2000