Search results

1 – 10 of over 86000
Article
Publication date: 22 March 2013

Hui Li, Cheng Zhong, Xiaoguang Hu, Long Xiao and Xianfeng Huang

Light Detection and Ranging (LiDAR) offers a fast and effective way to acquire DSM and extract ground objects such as building, trees and so on. However, it is difficult to…

Abstract

Purpose

Light Detection and Ranging (LiDAR) offers a fast and effective way to acquire DSM and extract ground objects such as building, trees and so on. However, it is difficult to extract sharp and precise building boundary from LiDAR data, because its ground sample distance (GSD) is often worse than that of high resolution image. Recently, fusion of LiDAR and high resolution image becomes a promising approach to extract precise boundary. To find the correct and precise boundary, the aim of this paper is to present a series of novel algorithms to improve the quality.

Design/methodology/approach

To find the correct and precise boundary, this paper presents a series of novel algorithms to improve the quality. At first, a progressive algorithm is presented to register LiDAR data and images; second, a modified adaptive TIN algorithm is presented to filter ground point, where a region growth method is applied in the adaptive TIN algorithm; third, a novel criterion based on the density, connectivity and distribution of point cluster is developed to distinguish trees point; fourth, a novel method based on the height difference between neighbor points is employed to extract coarse boundaries; at last, a knowledge based rule is put forward to identify correct building boundary from parallel edges.

Findings

Thorough experiments, it is conducted that: the registration results are accurate and reliable; filtered ground points has good quality, without missing or redundancy; all tree clusters bigger than one grid are detected, and points of walls and edges are eliminated with the new criterion; detected edges exactly locate at real building boundaries, and statistics show the detection correctness is 98 percent, and the detection completeness is 95 percent.

Originality/value

All results prove that precise boundary can be extracted with fusion of LiDAR and high resolution image.

Details

Sensor Review, vol. 33 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 June 2020

Yang Zhang, Wei Liu, Yongkang Lu, Xikang Cheng, Weiqi Luo, Hongtu Di and Fuji Wang

Profile measurement with boundary information plays a vital role in the detection of quality in the assembly of aviation parts. The purpose of this paper is to improve the…

Abstract

Purpose

Profile measurement with boundary information plays a vital role in the detection of quality in the assembly of aviation parts. The purpose of this paper is to improve the evaluation accuracy of the aerodynamic shapes of airplanes, the profiles of large-sized parts need to be measured accurately.

Design/methodology/approach

In this paper, an accurate profile measurement method based on boundary reference points is proposed for the industrial stereo-vision system. Based on the boundary-reference points, the authors established a priori constraint for extracting the boundary of the measured part. Combining with the image features of background and the measured part, an image-edge compensation model is established to extract the boundary of the measured part. The critical point of a laser stripe on the edge of the measured part is extracted corresponding to the boundary constraint. Finally, as per the principle of binocular vision, the profile of the measured part is reconstructed.

Finding

Laboratory experiments validate the measurement accuracy of the proposed method which is 0.33 mm. In the analysis of results between the measured data and the theoretical model, the measuring accuracy of the proposed method was found to be significantly higher than that of the other traditional methods.

Practical implication

An aviation part was measured in the part-assembly shop by the proposed method, which verified the feasibility and effectiveness of this method. The research can realize the measurement of smooth surface boundary which can solve existing profile reconstruction problems for aviation parts.

Originality/value

According to the two-dimensional contour constraint, critical points of the laser strip sequence at the edge of measured part are extracted and the accurate profile reconstruction with the boundary is realized.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 August 2003

Nam Mai‐Duy and Thanh Tran‐Cong

This paper is concerned with the application of radial basis function networks (RBFNs) as interpolation functions for all boundary values in the boundary element method (BEM) for…

Abstract

This paper is concerned with the application of radial basis function networks (RBFNs) as interpolation functions for all boundary values in the boundary element method (BEM) for the numerical solution of heat transfer problems. The quality of the estimate of boundary integrals is greatly affected by the type of functions used to interpolate the temperature, its normal derivative and the geometry along the boundary from the nodal values. In this paper, instead of conventional Lagrange polynomials, interpolation functions representing these variables are based on the “universal approximator” RBFNs, resulting in much better estimates. The proposed method is verified on problems with different variations of temperature on the boundary from linear level to higher orders. Numerical results obtained show that the BEM with indirect RBFN (IRBFN) interpolation performs much better than the one with linear or quadratic elements in terms of accuracy and convergence rate. For example, for the solution of Laplace's equation in 2D, the BEM can achieve the norm of error of the boundary solution of O(10−5) by using IRBFN interpolation while quadratic BEM can achieve a norm only of O(10−2) with the same boundary points employed. The IRBFN‐BEM also appears to have achieved a higher efficiency. Furthermore, the convergence rates are of O(h1.38) and O(h4.78) for the quadratic BEM and the IRBFN‐based BEM, respectively, where h is the nodal spacing.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 1962

H.L Price

A method is developed or drawing ground resonance stability boundaries in the (?1, ?) plane for arbitrary values of the parameters ??, A1 and Aa. The current values of ?1 and …

Abstract

A method is developed or drawing ground resonance stability boundaries in the (?1, ?) plane for arbitrary values of the parameters ??, A1 and Aa. The current values of ?1 and ? are expressed simply and directly in terms of the co‐ordinates (Y, Z) of points lying on a parabola whose equation involves ??, A1 and A3. The position of the intersections of this parabola with a certain unique curve in the (Y, Z) plane determines into which of three classes each stability boundary falls. All stability boundaries split up into two separate branches, and only in one class of boundaries do the branches align themselves in such a way as to permit the possibility of stability for all rotor speeds ?. A method is given showing how ??, A1 and A3 may be determined to achieve this effect.

Details

Aircraft Engineering and Aerospace Technology, vol. 34 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 30 September 2014

Rubén Sarabia-Pérez, Antonio Jimeno-Morenilla and Rafael Molina-Carmona

The purpose of this paper is to present a new geometric model based on the mathematical morphology paradigm, specialized to provide determinism to the classic morphological…

Abstract

Purpose

The purpose of this paper is to present a new geometric model based on the mathematical morphology paradigm, specialized to provide determinism to the classic morphological operations. The determinism is needed to model dynamic processes that require an order of application, as is the case for designing and manufacturing objects in CAD/CAM environments.

Design/methodology/approach

The basic trajectory-based operation is the basis of the proposed morphological specialization. This operation allows the definition of morphological operators that obtain sequentially ordered sets of points from the boundary of the target objects, inexistent determinism in the classical morphological paradigm. From this basic operation, the complete set of morphological operators is redefined, incorporating the concept of boundary and determinism: trajectory-based erosion and dilation, and other morphological filtering operations.

Findings

This new morphological framework allows the definition of complex three-dimensional objects, providing arithmetical support to generating machining trajectories, one of the most complex problems currently occurring in CAD/CAM.

Originality/value

The model proposes the integration of the processes of design and manufacture, so that it avoids the problems of accuracy and integrity that present other classic geometric models that divide these processes in two phases. Furthermore, the morphological operative is based on points sets, so the geometric data structures and the operations are intrinsically simple and efficient. Another important value that no excessive computational resources are needed, because only the points in the boundary are processed.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 June 2016

Sajan Kapil, Prathamesh Joshi, Hari Vithasth Yagani, Dhirendra Rana, Pravin Milind Kulkarni, Ranjeet Kumar and K.P. Karunakaran

In additive manufacturing (AM) process, the physical properties of the products made by fractal toolpaths are better as compared to those made by conventional toolpaths. Also, it…

1122

Abstract

Purpose

In additive manufacturing (AM) process, the physical properties of the products made by fractal toolpaths are better as compared to those made by conventional toolpaths. Also, it is desirable to minimize the number of tool retractions. The purpose of this study is to describe three different methods to generate fractal-based computer numerical control (CNC) toolpath for area filling of a closed curve with minimum or zero tool retractions.

Design/methodology/approach

This work describes three different methods to generate fractal-based CNC toolpath for area filling of a closed curve with minimum or zero tool retractions. In the first method, a large fractal square is placed over the outer boundary and then rest of the unwanted curve is trimmed out. To reduce the number of retractions, ends of the trimmed toolpath are connected in such a way that overlapping within the existing toolpath is avoided. In the second method, the trimming of the fractal is similar to the first method but the ends of trimmed toolpath are connected such that the overlapping is found at the boundaries only. The toolpath in the third method is a combination of fractal and zigzag curves. This toolpath is capable of filling a given connected area in a single pass without any tool retraction and toolpath overlap within a tolerance value equal to stepover of the toolpath.

Findings

The generated toolpath has several applications in AM and constant Z-height surface finishing. Experiments have been performed to verify the toolpath by depositing material by hybrid layered manufacturing process.

Research limitations/implications

Third toolpath method is suitable for the hybrid layered manufacturing process only because the toolpath overlapping tolerance may not be enough for other AM processes.

Originality/value

Development of a CNC toolpath for AM specifically hybrid layered manufacturing which can completely fill any arbitrary connected area in single pass while maintaining a constant stepover.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 November 2015

Yanchuang Cao, Junjie Rong, Lihua Wen and Jinyou Xiao

The purpose of this paper is to develop an easy-to-implement and accurate fast boundary element method (BEM) for solving large-scale elastodynamic problems in frequency and time…

215

Abstract

Purpose

The purpose of this paper is to develop an easy-to-implement and accurate fast boundary element method (BEM) for solving large-scale elastodynamic problems in frequency and time domains.

Design/methodology/approach

A newly developed kernel-independent fast multipole method (KIFMM) is applied to accelerating the evaluation of displacements, strains and stresses in frequency domain elastodynamic BEM analysis, in which the far-field interactions are evaluated efficiently utilizing equivalent densities and check potentials. Although there are six boundary integrals with unique kernel functions, by using the elastic theory, the authors managed to accelerate these six boundary integrals by KIFMM with the same kind of equivalent densities and check potentials. The boundary integral equations are discretized by Nyström method with curved quadratic elements. The method is further used to conduct the time-domain analysis by using the frequency-domain approach.

Findings

Numerical results show that by the fast BEM, high accuracy can be achieved and the computational complexity is brought down to linear. The performance of the present method is further demonstrated by large-scale simulations with more than two millions of unknowns in the frequency domain and one million of unknowns in the time domain. Besides, the method is applied to the topological derivatives for solving elastodynamic inverse problems.

Originality/value

An efficient KIFMM is implemented in the acceleration of the elastodynamic BEM. Combining with the Nyström discretization based on quadratic elements and the frequency-domain approach, an accurate and highly efficient fast BEM is achieved for large-scale elastodynamic frequency domain analysis and time-domain analysis.

Article
Publication date: 1 March 2003

Eugeniusz Zieniuk

This paper presents a modification of the classical boundary integral equation method (BIEM) for two‐dimensional potential boundary‐value problem. The proposed modification…

Abstract

This paper presents a modification of the classical boundary integral equation method (BIEM) for two‐dimensional potential boundary‐value problem. The proposed modification consists in describing the boundary geometry by means of Hermite curves. As a result of this analytical modification of the boundary integral equation (BIE), a new parametric integral equation system (PIES) is obtained. The kernels of these equations include the geometry of the boundary. This new PIES is no longer defined on the boundary, as in the case of the BIE, but on the straight line for any given domain. The solution of the new PIES does not require boundary discretization as it can be reduced merely to an approximation of boundary functions. To solve this PIES a pseudospectral method has been proposed and the results obtained compared with exact solutions.

Details

Engineering Computations, vol. 20 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1986

MICHAEL SEVER

An algorithm for Delaunay partitioning in three dimensions is given, and its use in numerical semiconductor models is examined. In particular, tetrahedral elements are found to be…

Abstract

An algorithm for Delaunay partitioning in three dimensions is given, and its use in numerical semiconductor models is examined. In particular, tetrahedral elements are found to be compatible with the Scharfetter‐Gummel discretization of the stationary continuity equations associated with such models, using the Voronoi cross‐sections for each edge in the obtained network. For tetrahedral elements, however, the Voronoi cross‐sections do not coincide with those previously shown to be compatible with the Scharfetter‐Gummel method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 5 no. 2
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 June 2010

E.I. Saavedra Flores and E.A. de Souza Neto

The purpose of this paper is to use symmetry conditions for the reduction of computing times in problems involving finite element‐based multi‐scale constitutive models of…

Abstract

Purpose

The purpose of this paper is to use symmetry conditions for the reduction of computing times in problems involving finite element‐based multi‐scale constitutive models of nonlinear heterogeneous media.

Design/methodology/approach

Two types of representative volume element (RVE) symmetry often found in practice are considered: staggered‐translational and point symmetry. These are analyzed under three types RVE of kinematical constraints: periodic boundary fluctuations (typical of periodic media), linear boundary displacements (which gives an upper bound for the macroscopic stiffness) and the minimum kinematical constraint (corresponding to uniform boundary tractions and providing a lower bound for the macroscopic stiffness).

Findings

Numerical examples show that substantial savings in computing times are achieved by taking advantage of such symmetries. These are particularly pronounced in fully coupled two‐scale analyses, where the macroscopic equilibrium problem is solved simultaneously with a large number of microscopic equilibrium problems at Gauss‐point level. Speed‐up factors in excess of seven have been found in such cases, when both symmetry conditions considered are present at the same time.

Originality/value

This paper extends the original considerations of Ohno et al. to account for other RVE kinematical constraints, namely, the linear boundary displacement and the minimum kinematical constraint (or uniform boundary traction model). Provides a more precise assessment of the impact of the use of such symmetries on computing times by means of numerical examples. In addition, for completeness, the direct enforcement of such constraints within a Newton‐based finite element solution procedure for the RVE equilibrium problem is detailed in the paper.

Details

Engineering Computations, vol. 27 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 86000