Search results

1 – 10 of 26
Article
Publication date: 26 September 2023

Chiara Bregoli, Jacopo Fiocchi, Carlo Alberto Biffi and Ausonio Tuissi

The present study investigates the mechanical properties of three types of Ti6Al4V ELI bone screws realized using the laser powder bed fusion (LPBF) process: a fully threaded…

Abstract

Purpose

The present study investigates the mechanical properties of three types of Ti6Al4V ELI bone screws realized using the laser powder bed fusion (LPBF) process: a fully threaded screw and two groups containing differently arranged sectors made of lattice-based Voronoi (LBV) structure in a longitudinal and transversal position, respectively. This study aims to explore the potentialities related to the introduction of LBV structure and assess its impact on the implant’s primary stability and mechanical performance.

Design/methodology/approach

The optimized bone screw designs were realized using the LPBF process. The quality and integrity of the specimens were assessed by scanning electron microscopy and micro-computed tomography. Primary stability was experimentally verified by the insertion and removal of the screws in standard polyurethane foam blocks. Finally, torsional tests were carried out to compare and assess the mechanical strength of the different designs.

Findings

The introduction of the LBV structure decreases the elastic modulus of the implant. Longitudinal LBV type screws demonstrated the lowest insertion torque (associated with lower bone damage) while still displaying promising torsional strength and removal force compared with full-thread screws. The use of LBV structure can promote improved functional performances with respect to the reference thread, enabling the use of lattice structures in the biomedical sector.

Originality/value

The paper fulfils an identified interest in designing customized implants with improved primary stability and promising features for secondary stability.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 March 2024

Wenqian Feng, Xinrong Li, Jiankun Wang, Jiaqi Wen and Hansen Li

This paper reviews the pros and cons of different parametric modeling methods, which can provide a theoretical reference for parametric reconstruction of 3D human body models for…

Abstract

Purpose

This paper reviews the pros and cons of different parametric modeling methods, which can provide a theoretical reference for parametric reconstruction of 3D human body models for virtual fitting.

Design/methodology/approach

In this study, we briefly analyze the mainstream datasets of models of the human body used in the area to provide a foundation for parametric methods of such reconstruction. We then analyze and compare parametric methods of reconstruction based on their use of the following forms of input data: point cloud data, image contours, sizes of features and points representing the joints. Finally, we summarize the advantages and problems of each method as well as the current challenges to the use of parametric modeling in virtual fitting and the opportunities provided by it.

Findings

Considering the aspects of integrity and accurate of representations of the shape and posture of the body, and the efficiency of the calculation of the requisite parameters, the reconstruction method of human body by integrating orthogonal image contour morphological features, multifeature size constraints and joint point positioning can better represent human body shape, posture and personalized feature size and has higher research value.

Originality/value

This article obtains a research thinking for reconstructing a 3D model for virtual fitting that is based on three kinds of data, which is helpful for establishing personalized and high-precision human body models.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 February 2024

Xiaoqing Zhang, Genliang Xiong, Peng Yin, Yanfeng Gao and Yan Feng

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous…

Abstract

Purpose

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous massage path planning and stable interaction control.

Design/methodology/approach

First, back region extraction and acupoint recognition based on deep learning is proposed, which provides a basis for determining the working area and path points of the robot. Second, to realize the standard approach and movement trajectory of the expert massage, 3D reconstruction and path planning of the massage area are performed, and normal vectors are calculated to control the normal orientation of robot-end. Finally, to cope with the soft and hard changes of human tissue state and body movement, an adaptive force tracking control strategy is presented to compensate the uncertainty of environmental position and tissue hardness online.

Findings

Improved network model can accomplish the acupoint recognition task with a large accuracy and integrate the point cloud to generate massage trajectories adapted to the shape of the human body. Experimental results show that the adaptive force tracking control can obtain a relatively smooth force, and the error is basically within ± 0.2 N during the online experiment.

Originality/value

This paper incorporates deep learning, 3D reconstruction and impedance control, the robot can understand the shape features of the massage area and adapt its planning massage path to carry out a stable and safe force tracking control during dynamic robot–human contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 October 2023

Kai Wang, Jiaying Liu, Shuai Yang, Jing Guo and Yongzhen Ke

This paper aims to automatically obtain the implant parameter from the CBCT images to improve the outcome of implant planning.

Abstract

Purpose

This paper aims to automatically obtain the implant parameter from the CBCT images to improve the outcome of implant planning.

Design/methodology/approach

This paper proposes automatic simulated dental implant positioning on CBCT images, which can significantly improve the efficiency of implant planning. The authors introduce the fusion point calculation method for the missing tooth's long axis and root axis based on the dental arch line used to obtain the optimal fusion position. In addition, the authors proposed a semi-interactive visualization method of implant parameters that be automatically simulated by the authors' method. If the plan does not meet the doctor's requirements, the final implant plan can be fine-tuned to achieve the optimal effect.

Findings

A series of experimental results show that the method proposed in this paper greatly improves the feasibility and accuracy of the implant planning scheme, and the visualization method of planting parameters improves the planning efficiency and the friendliness of system use.

Originality/value

The proposed method can be applied to dental implant planning software to improve the communication efficiency between doctors, patients and technicians.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 January 2024

Nirmal Singh, Harmanjit Singh Banga, Jaswinder Singh and Rajnish Sharma

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by…

Abstract

Purpose

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by implementing 3D printing technology under the “Makerspace.”

Design/methodology/approach

The paper provides a brief account of various tools and techniques used by veterinary and animal sciences institutions for information dissemination amongst the stakeholders and associated challenges with a focus on the use of 3D printing technology to overcome the bottlenecks. An overview of the 3D printing technology has been provided following the instances of use of this novel technology in veterinary and animal sciences. An initiative of the University Library, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, to harness the potential of this technology in disseminating information amongst livestock stakeholders has been discussed.

Findings

3D printing has the potential to enhance learning in veterinary and animal sciences by providing hands-on exposure to various anatomical structures, such as bones, organs and blood vessels, without the need for a cadaver. This approach enhances students’ spatial understanding and helps them better understand anatomical concepts. Libraries can enhance their visibility and can contribute actively to knowledge dissemination beyond traditional library services.

Originality/value

The ideas about how to harness the potential of 3D printing in knowledge dissemination amongst livestock sector stakeholders have been elaborated. This promotes creativity amongst librarians enabling them to think how they can engage in knowledge dissemination thinking out of the box.

Details

Library Hi Tech News, vol. 41 no. 2
Type: Research Article
ISSN: 0741-9058

Keywords

Article
Publication date: 11 August 2023

Kevin Moj, Robert Owsiński, Grzegorz Robak and Munish Kumar Gupta

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of…

Abstract

Purpose

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of structural components with enhanced performance. Numerous studies have shown that the technical qualities of AM components are profoundly affected by the discovery of novel metastable substructures in diverse alloys. Therefore, the purpose of this study is to determine the effect of cell structure parameters on its mechanical response.

Design/methodology/approach

Initially, a methodology was suggested for testing porous materials, focusing on static tensile testing. For a qualitative evaluation of the cellular structures produced, computed tomography (CT) was used. Then, the CT scanner was used to analyze a sample and determine its actual relative density, as well as perform a detailed geometric analysis.

Findings

The experimental research demonstrates that the mechanical properties of a cell’s structure are significantly influenced by its shape during formation. It was also determined that using selective laser melting to produce cell structures with a minimum single-cell size of approximately 2 mm would be the most appropriate method.

Research limitations/implications

Further studies of cellular structures for testing their static tensile strength are planned for the future. The study will be carried out for a larger number of samples, taking into account a wider range of cellular structure parameters. An important step will also be the verification of the results of the static tensile test using numerical analysis for the model obtained by CT scanning.

Originality/value

The fabrication of metallic parts with different cellular structures is very important with a selective laser melted machine. However, the determination of cell size and structure with mechanical properties is quiet novel in this current investigation.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2024

Amrita Hari, Luciara Nardon and Dunja Palic

Educational institutions are investing heavily in the internationalization of their campuses to attract global talent. Yet, highly skilled immigrants face persistent labor market…

Abstract

Purpose

Educational institutions are investing heavily in the internationalization of their campuses to attract global talent. Yet, highly skilled immigrants face persistent labor market challenges. We investigate how immigrant academics experience and mitigate their double precarity (migrant and academic) as they seek employment in higher education in Canada.

Design/methodology/approach

We take a phenomenological approach and draw on reflective interviews with nine immigrant academics, encouraging participants to elaborate on symbols and metaphors to describe their experiences.

Findings

We found that immigrant academics constitute a unique highly skilled precariat: a group of professionals with strong professional identities and attachments who face the dilemma of securing highly precarious employment (temporary, part-time and insecure) in a new academic environment or forgoing their professional attachment to seek stable employment in an alternate occupational sector. Long-term, stable and commensurate employment in Canadian higher education is out of reach due to credentialism. Those who stay the course risk deepening their precarity through multiple temporary engagements. Purposeful deskilling toward more stable employment that is disconnected from their previous educational and career accomplishments is a costly alternative in a situation of limited information and high uncertainty.

Originality/value

We bring into the conversation discussions of migrant precarity and academic precarity and draw on immigrant academics’ unique experiences and strategies to understand how this double precarization shapes their professional identities, mobility and work integration in Canadian higher education.

Details

Equality, Diversity and Inclusion: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-7149

Keywords

Article
Publication date: 1 December 2023

Hao Wang, Hamzeh Al Shraida and Yu Jin

Limited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for…

Abstract

Purpose

Limited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for online inspection and compensation to prevent error accumulation and improve shape fidelity in AM.

Design/methodology/approach

A sequence-to-sequence model with an attention mechanism (Seq2Seq+Attention) is proposed and implemented to predict subsequent layers or the occluded toolpath deviations after the multiresolution alignment. A shape compensation plan can be performed for the large deviation predicted.

Findings

The proposed Seq2Seq+Attention model is able to provide consistent prediction accuracy. The compensation plan proposed based on the predicted deviation can significantly improve the printing fidelity for those layers detected with large deviations.

Practical implications

Based on the experiments conducted on the knee joint samples, the proposed method outperforms the other three machine learning methods for both subsequent layer and occluded toolpath deviation prediction.

Originality/value

This work fills a research gap for predicting in-plane deviation not only for subsequent layers but also for occluded paths due to the missing scanning measurements. It is also combined with the multiresolution alignment and change point detection to determine the necessity of a compensation plan with updated G-code.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 March 2024

Monica Puri Sikka, Jameer Aslam Bargir and Samridhi Garg

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in…

Abstract

Purpose

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in patients with burns and wounds and the difficulty of treating infections and antimicrobial resistance. Woven, nonwoven and knitted materials are used to make dressings; however, nonwoven dressings are becoming more popular because of their softness and high absorption capacity. Additionally, textiles have excellent geometrical, physical and mechanical features including three-dimensional structure availability, air, vapor and liquid permeability, strength, extensibility, flexibility and diversity of fiber length, fineness and cross-sectional shapes. It is necessary to treat every burn according to international protocol and along with it has to focus on particular problems of patients and the best possible results.

Design/methodology/approach

The objective of this paper is to conduct a thorough examination of research pertaining to the utilization of textiles, as well as alternative materials and innovative techniques, in the context of burn wound dressings. Through a critical analysis of the findings, this study intends to provide valuable insights that can inform and guide future research endeavors in this field.

Findings

In the past years, there have been several dressings such as xeroform petrolatum gauze, silver-impregnated dressings, biological dressings, hydrocolloid dressings, polyurethane film dressings, silicon-coated nylon dressings, dressings for biosynthetic skin substitutes, hydrogel dressings, newly developed dressings, scaffold bandages, Sorbalgon wound dressing, negative pressure therapy, enzymatic debridement and high-pressure water irrigation developed for the fast healing of burn wounds.

Originality/value

This research conducts a thorough analysis of the role of textiles in modern burn wound dressings.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 26