Search results

1 – 2 of 2
Open Access
Article
Publication date: 2 March 2023

Kartik Venkatraman, Stéphane Moreau, Julien Christophe and Christophe Schram

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating…

1432

Abstract

Purpose

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating conditions. This paper aims at understanding the flow physics around a model VAWT for three different tip speed ratios corresponding to three different flow regimes.

Design/methodology/approach

This study achieves a first three-dimensional hybrid lattice Boltzmann method/very large eddy simulation (LBM-VLES) model for a complete scaled model VAWT with end plates and mast using the solver PowerFLOW. The power curve predicted from the numerical simulations is compared with the experimental data collected at Erlangen University. This study highlights the complexity of the turbulent flow features that are seen at three different operational regimes of the turbine using instantaneous flow structures, mean velocity, pressure iso-contours, blade loading and skin friction plots.

Findings

The power curve predicted using the LBM-VLES approach and setup provides a good overall match with the experimental power curve, with the peak and drop after the operational point being captured. Variable turbulent flow structures are seen over the azimuthal revolution that depends on the tip speed ratio (TSR). Significant dynamic stall structures are seen in the upwind phase and at the end of the downwind phase of rotation in the deep stall regime. Strong blade wake interactions and turbulent flow structures are seen inside the rotor at higher TSRs.

Research limitations/implications

The computational cost and time for such high-fidelity simulations using the LBM-VLES remains expensive. Each simulation requires around a week using supercomputing facilities. Further studies need to be performed to improve analytical VAWT models using inputs/calibration from high fidelity simulation databases. As a future work, the impact of turbulent and nonuniform inflow conditions that are more representative of a typical urban environment also needs to be investigated.

Practical implications

The LBM methodology is shown to be a reliable approach for VAWT power prediction. Dynamic stall and blade wake interactions reduce the aerodynamic performance of a VAWT. An ideal operation close to the peak of the power curve should be favored based on the local wind resource, as this point exhibits a smoother variation of forces improving operational performance. The 3D flow features also exhibit a significant wake asymmetry that could impact the optimal layout of VAWT clusters to increase their power density. The present work also highlights the importance of 3D simulations of the complete model including the support structures such as end plates and mast.

Social implications

Accurate predictions of power performance for Darrieus VAWTs could help in better siting of wind turbines thus improving return of investment and reducing levelized cost of energy. It could promote the development of onsite electricity generation, especially for industrial sites/urban areas and renew interest for VAWT wind farms.

Originality/value

A first high-fidelity simulation of a complete VAWT with end plates and supporting structures has been performed using the LBM approach and compared with experimental data. The 3D flow physics has been analyzed at different operating regimes of the turbine. These physical insights and prediction capabilities of this approach could be useful for commercial VAWT manufacturers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 4 November 2020

Alberto Moscatello, Anna Chiara Uggenti, Gaetano Iuso, Domenic D'Ambrosio, Gioacchino Cafiero, Raffaella Gerboni and Andrea Carpignano

The purpose of this paper is to present a procedure to design an experimental setup meant to validate an innovative approach for simulating, via computational fluid dynamics, a…

Abstract

Purpose

The purpose of this paper is to present a procedure to design an experimental setup meant to validate an innovative approach for simulating, via computational fluid dynamics, a high-pressure gas release from a rupture (e.g. on an offshore oil and gas platform). The design is based on a series of scaling exercises, some of which are anything but trivial.

Design/methodology/approach

The experimental setup is composed of a wind tunnel, the instrumented scaled (1:10) mock-up of an offshore platform and a gas release system. A correct scaling approach is necessary to define the reference speed in the wind tunnel and the conditions of the gas release to maintain similarity with respect to the real-size phenomena. The scaling of the wind velocity and the scaling of the gas release were inspired by the approach proposed by Hall et al. (1997): a dimensionless group was chosen to link release parameters, wind velocity and geometric scaling factor.

Findings

The theoretical scaling approaches for each different part of the setup were applied to the design of the experiment and some criticalities were identified, such as the existence of a set of case studies with some release parameters laying outside the applicability range of the developed scaling methodology, which will be further discussed.

Originality/value

The resulting procedure is one of a kind because it involves a multi-scaling approach because of the different aspects of the design. Literature supports for the different scaling theories but, to the best of the authors’ knowledge, fails to provide an integrated approach that considers the combined effects of scaling.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Only content I have access to

Year

Content type

1 – 2 of 2