Search results

1 – 10 of 277
Open Access
Article
Publication date: 2 March 2023

Kartik Venkatraman, Stéphane Moreau, Julien Christophe and Christophe Schram

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating…

1429

Abstract

Purpose

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating conditions. This paper aims at understanding the flow physics around a model VAWT for three different tip speed ratios corresponding to three different flow regimes.

Design/methodology/approach

This study achieves a first three-dimensional hybrid lattice Boltzmann method/very large eddy simulation (LBM-VLES) model for a complete scaled model VAWT with end plates and mast using the solver PowerFLOW. The power curve predicted from the numerical simulations is compared with the experimental data collected at Erlangen University. This study highlights the complexity of the turbulent flow features that are seen at three different operational regimes of the turbine using instantaneous flow structures, mean velocity, pressure iso-contours, blade loading and skin friction plots.

Findings

The power curve predicted using the LBM-VLES approach and setup provides a good overall match with the experimental power curve, with the peak and drop after the operational point being captured. Variable turbulent flow structures are seen over the azimuthal revolution that depends on the tip speed ratio (TSR). Significant dynamic stall structures are seen in the upwind phase and at the end of the downwind phase of rotation in the deep stall regime. Strong blade wake interactions and turbulent flow structures are seen inside the rotor at higher TSRs.

Research limitations/implications

The computational cost and time for such high-fidelity simulations using the LBM-VLES remains expensive. Each simulation requires around a week using supercomputing facilities. Further studies need to be performed to improve analytical VAWT models using inputs/calibration from high fidelity simulation databases. As a future work, the impact of turbulent and nonuniform inflow conditions that are more representative of a typical urban environment also needs to be investigated.

Practical implications

The LBM methodology is shown to be a reliable approach for VAWT power prediction. Dynamic stall and blade wake interactions reduce the aerodynamic performance of a VAWT. An ideal operation close to the peak of the power curve should be favored based on the local wind resource, as this point exhibits a smoother variation of forces improving operational performance. The 3D flow features also exhibit a significant wake asymmetry that could impact the optimal layout of VAWT clusters to increase their power density. The present work also highlights the importance of 3D simulations of the complete model including the support structures such as end plates and mast.

Social implications

Accurate predictions of power performance for Darrieus VAWTs could help in better siting of wind turbines thus improving return of investment and reducing levelized cost of energy. It could promote the development of onsite electricity generation, especially for industrial sites/urban areas and renew interest for VAWT wind farms.

Originality/value

A first high-fidelity simulation of a complete VAWT with end plates and supporting structures has been performed using the LBM approach and compared with experimental data. The 3D flow physics has been analyzed at different operating regimes of the turbine. These physical insights and prediction capabilities of this approach could be useful for commercial VAWT manufacturers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 September 2006

Terry Ford

383

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 17 August 2021

Emanuele Quaranta, Toni Pujol and Maria Carmela Grano

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to…

1880

Abstract

Purpose

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to preliminary estimate related benefits and costs of a VAWM repowering.

Design/methodology/approach

Two sustainable repowering solutions were examined with the additional aim to preserve the original status and aesthetics of a VAWM: the use of a vertical axis water wheel (VAWW) and a vertical axis impulse turbine. The analysis was applied to a database of 714 VAWMs in Basilicata (Italy), with known head and flow.

Findings

Expeditious equations were proposed for both solutions to determine: (1) a suitable diameter as a function of the flow rate; (2) the costs of the electromechanical equipment; (3) achievable power. The common operating hydraulic range of a VAWM (head and flow) was also identified. Reality checks on the obtained results are shown, in particular by examining two Spanish case studies and the available literature. The power generated by the impulse turbine (Turgo type) is twice that of a VAWW, but it is one order of magnitude more expensive. Therefore, the impulse turbine should be used for higher power requirements (>3 kW), or when the electricity is delivered to the grid, maximizing the long-term profit.

Originality/value

Since there is not enough evidence about the achievable performance and cost of a VAWM repowering, this work provides expeditious tools for their evaluation.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 2
Type: Research Article
ISSN: 2044-1266

Keywords

Content available
Article
Publication date: 1 October 1998

286

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 70 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 June 1999

273

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 31 January 2024

Kilian Fricke, Thomas Bergs, Philipp Ganser and Martin Seimann

The aviation industry has seen consistent growth over the past few decades. To maintain its sustainability and competitiveness, it is important to have a comprehensive…

Abstract

Purpose

The aviation industry has seen consistent growth over the past few decades. To maintain its sustainability and competitiveness, it is important to have a comprehensive understanding of the environmental impacts across the entire life cycle of the industry, including materials, processes and resources; manufacturing and production; lifetime services; reuse; end-of-life; and recycling. One important component of aircraft engines, integral rotors known as Blisks, are made of high-value metallic alloys that require complex and resource-intensive manufacturing processes. The purpose of this paper is to assess the ecological and economical impacts generated through Blisk production and thereby identify significant ‘hot-spots’.

Design/methodology/approach

This paper focuses on the methodology and approach for conducting a full-scale Blisk life cycle assessment (LCA) based on ISO 14040/44. Unlike previous papers in the European Aerospace Science Network series, which focused on the first two stages of LCA, this publication delves into the “life cycle impact assessment” and “interpretation” stages, providing an overview of the life cycle inventory modeling, impact category selection and presenting preliminary LCA results for the Blisk manufacturing process chain.

Findings

The result shows that the milled titanium Blisk has a lower CO2 footprint than the milled nickel Blisk, which is less than half of the global warming potential (GWP) of the milled nickel Blisk. A main contributor to GWP arises from raw material production. However, no recycling scenarios were included in the analysis, which will be the topic of further investigations.

Originality/value

The originality of this work lies in the detailed ecological assessment of the manufacturing for complex engine components and the derivation of hot spots as well as potential improvements in terms of eco-footprint reduction throughout the products cradle-to-gate cycle. The LCA results serve as a basis for future approaches of process chain optimisation, use of “greener” materials and individual process improvements.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 April 2003

135

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 December 2003

Terry Ford

495

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 4 January 2011

Craig Henry

753

Abstract

Details

Strategy & Leadership, vol. 39 no. 1
Type: Research Article
ISSN: 1087-8572

Open Access
Article
Publication date: 5 May 2021

Chloé Joffre

The aim of this research paper is to design a motor holder in order to minimize the weight of the motor and to reduce its vibrations causing noise pollution.

Abstract

Purpose

The aim of this research paper is to design a motor holder in order to minimize the weight of the motor and to reduce its vibrations causing noise pollution.

Design/methodology/approach

To meet the requirements of the purpose the use of cellular lattice structures is ideal. Lattice structures ensure both low mass and high strength. Moreover, their absorption properties are relatively interesting concerning the attenuation of vibrations.

Findings

The result of this paper shows that lattice structure can answer to the need of different fields such as aeronautics in the design of lightweight structures which are strong with a low mass. Indeed, the weight of the final structure of the holder is 0.92 g and its safety factor is 5.1 which met the requirements.

Research limitations/implications

The limitations of the research paper were the RAM capacity of the computer.

Social implications

To minimize the weight of the holder in a patroller or a plane is to reduce the consumption of fuel. Moreover one of the reasons of optimizing the vibrations is to reduce noise pollution.

Originality/value

This paper is directed to students, designers who want to know more about the use of lattice structure and more precisely honeycomb sandwich structure.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Only content I have access to

Year

Content type

Article (277)
1 – 10 of 277