Search results

1 – 10 of over 3000
Article
Publication date: 24 June 2021

Aleksandar Kovačević, Jelena Svorcan, Mohammad Sakib Hasan, Toni Ivanov and Miroslav Jovanović

Modern unmanned air vehicles (UAVs) are usually equipped with rotors connected to electric motors that enable them to hover and fly in all directions. The purpose of the paper is…

Abstract

Purpose

Modern unmanned air vehicles (UAVs) are usually equipped with rotors connected to electric motors that enable them to hover and fly in all directions. The purpose of the paper is to design optimal composite rotor blades for such small UAVs and investigate their aerodynamic performances both computationally and experimentally.

Design/methodology/approach

Artificial intelligence method (genetic algorithm) is used to optimize the blade airfoil described by six input parameters. Furthermore, different computational methods, e.g. vortex methods and computational fluid dynamics, blade element momentum theory and finite element method, are used to predict the aerodynamic performances of the optimized airfoil and complete rotor as well the structural behaviour of the blade, respectively. Finally, composite blade is manufactured and the rotor performance is also determined experimentally by thrust and torque measurements.

Findings

Complete process of blade design (including geometry definition and optimization, estimation of aerodynamic performances, structural analysis and blade manufacturing) is conducted and explained in detail. The correspondence between computed and measured thrust and torque curves of the optimal rotor is satisfactory (differences mostly remain below 15%), which validates and justifies the used design approach formulated specifically for low-cost, small-scale propeller blades. Furthermore, the proposed techniques can easily be applied to any kind of rotating lifting surfaces including helicopter or wind turbine blades.

Originality/value

Blade design methodology is simplified, shortened and made more flexible thus enabling the fast and economic production of propeller blades optimized for specific working conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 June 2021

Witold Artur Klimczyk

This paper aims to present a methodology of designing a custom propeller for specified needs. The example of propeller design for large unmanned air vehicle (UAV) is considered.

Abstract

Purpose

This paper aims to present a methodology of designing a custom propeller for specified needs. The example of propeller design for large unmanned air vehicle (UAV) is considered.

Design/methodology/approach

Starting from low fidelity Blade Element (BE) methods, the design is obtained using evolutionary algorithm-driven process. Realistic constraints are used, including minimum thickness required for stiffness, as well as manufacturing ones – including leading and trailing edge limits. Hence, the interactions between propellers in hex-rotor configuration, and their influence on structural integrity of the UAV are investigated. Unsteady Reynolds-Averaged Navier–Stokes (URANS) are used to obtain loading on the propeller blades in hover. Optimization of the propeller by designing a problem-specific airfoil using surrogate modeling-driven optimization process is performed.

Findings

The methodology described in the current paper proved to deliver an efficient blade. The optimization approach allowed to further improve the blade efficiency, with power consumption at hover reduced by around 7%.

Practical implications

The methodology can be generalized to any blade design problem. Depending on the requirements and constraints the result will be different.

Originality/value

Current work deals with the relatively new class of design problems, where very specific requirements are put on the propellers. Depending on these requirements, the optimum blade geometry may vary significantly.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 February 2015

Manoj Kumar Chaudhary and Anindita Roy

A small wind turbine blade was designed and optimized in this research paper. The blade plays an important role, because it is the most important part of the energy absorption…

Abstract

A small wind turbine blade was designed and optimized in this research paper. The blade plays an important role, because it is the most important part of the energy absorption system. Consequently, the blade has to be designed carefully to enable to absorb energy with its greatest efficiency. The main objective of this paper is to optimized blade number and selection of tip speed ratio corresponding to the solidity. The power performance of small horizontal axis wind turbines was simulated in detail using blade element momentum methods (BEM). In this paper for wind blade design various factors such as tip loss, hub loss, drag coefficient, and wake were considered. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, twist angle distribution along the radius, and chord length distribution along the radius. A parametric study that will determine if the optimized values of blade twist angle and chord length create the most efficient blade geometry. The 3-bladed, 5-bladed and 7-bladed rotor achieved maximum values of Cp 0.46, 0.5 and 0.48 at the tip speed ratio 7, 5 and 4 respectively. It was observed that using BEM theory, maximum Cp varied with strongly solidity and weakly with the blade number. The studies showed that the power coefficient increases upto blade number B = 5, while the blade number if increased above 5 then the power coefficient decreases at operating pitch angle equal to 3°. Highest Cp would have solidity between 4% to 6% for number of blade 3 and design point tip speed ratio of about "7". Highest Cp would have solidity ranging from 5% to 10% for number of blade 5 and 7 and design point tip speed ratio of about 5 and 4 respectively.

Details

World Journal of Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 December 2023

Ying-Jie Guan and Yong-Ping Li

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately…

Abstract

Purpose

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately, this paper aims to propose a four-axis eight-rotor rescue unmanned aerial vehicle (UAV) which can carry a radar life detector. As the design of propeller is the key to the design of UAV, this paper mainly designs the propeller of the UAV at the present stage.

Design/methodology/approach

Based on the actual working conditions of UAVs, this paper preliminarily estimated the load of UAVs and the diameters of propellers and designed the main parameters of propellers according to the leaf element theory and momentum theory. Based on the low Reynolds number airfoil, this paper selected the airfoil with high lift drag ratio from the commonly used low Reynolds number airfoils. The chord length and twist angle of propeller blades were calculated according to the Wilson method and the maximum wind energy utilization coefficient and were optimized by the Asymptotic exponential function. The aerodynamic characteristics of the designed single propeller and coaxial propeller under different installation pitch angles and different installation distances were analyzed.

Findings

The results showed that the design of coaxial twin propellers can increase the load capacity by about 1.5 times without increasing the propeller diameter. When the installation distance between the two propellers was 8 cm and the tilt angle was 15° counterclockwise, the aerodynamic characteristics of the coaxial propeller were optimal.

Originality/value

The novelty of this work came from the conceptual design of the new rescue UAV and its numerical optimization using the Wilson method combined with the maximum wind energy utilization factor and the exponential function. The aerodynamic characteristics of the common shaft propeller were analyzed under different mounting angles and different mounting distances.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 August 2012

Kamel Abboudi, Lassaad Walha, Yassine Driss, Mohamed Maatar and Mohamed Haddar

The purpose of this paper is to study the effects of aerodynamic excitations on the dynamic behavior of a helical two‐stage gear system.

1010

Abstract

Purpose

The purpose of this paper is to study the effects of aerodynamic excitations on the dynamic behavior of a helical two‐stage gear system.

Design/methodology/approach

The methodology consists of developing a wind turbine model including a helical two‐stage gear train having 21 DOFs.

Findings

The results of this paper show that the dynamic behavior of the speed‐up gearbox inside the wind turbine is affected by various degrees of flexibility at different frequencies.

Originality/value

The aerodynamic forces are calculated by two main methods, the first is the actuator disc theory and the second is the BladeElement Method. Some correction functions are applied, such as the tip‐root loss functions and the Glauert correction factor. The convergence of the induction factors permits to increase the precision of predictions. Finally, the generator side is modeled by a simplified electric schematic based on steady state model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 July 2016

João Morgado, Miguel A.R. Silvestre and José C. Páscoa

The purpose of the paper is to analyse different post-stall models, originally developed for use in wind turbine codes, and extend their use to the propeller performance…

Abstract

Purpose

The purpose of the paper is to analyse different post-stall models, originally developed for use in wind turbine codes, and extend their use to the propeller performance prediction.

Design/methodology/approach

Different post-stall methods available in the literature were implemented in JBLADE software. JBLADE contains an improved version of Blade Element Momentum theory, and it is appropriate for the design and analysis of different propellers in off-design conditions.

Findings

The preliminary analysis of the results shows that the propeller performance prediction can be improved using these implemented post-stall models. However, there is a lack of accuracy in the performance prediction of some propellers. Further comparisons including distribution of forces along the blade may help to better understand this inaccuracy of the models, and it will be studied in future work.

Originality/value

The work has extended the use of the post-stall models to the propeller performance prediction codes. It is shown that these models can be used to obtain an improved prediction of the propeller’s performance.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 April 2018

Siddharth Suhas Kulkarni, Craig Chapman, Hanifa Shah and David John Edwards

The purpose of this paper is to conduct a comparative analysis between a straight blade (SB) and a curved caudal-fin tidal turbine blade (CB) and to examine the aspects relating…

Abstract

Purpose

The purpose of this paper is to conduct a comparative analysis between a straight blade (SB) and a curved caudal-fin tidal turbine blade (CB) and to examine the aspects relating to geometry, turbulence modelling, non-dimensional forces lift and power coefficients.

Design/methodology/approach

The comparison utilises results obtained from a default horizontal axis tidal turbine with turbine models available from the literature. A computational design method was then developed and implemented for “horizontal axis tidal turbine blade”. Computational fluid dynamics (CFD) results for the blade design are presented in terms of lift coefficient distribution at mid-height blades, power coefficients and blade surface pressure distributions. Moving the CB back towards the SB ensures that the total blade height stays constant for all geometries. A 3D mesh independency study of a “straight blade horizontal axis tidal turbine blade” modelled using CFD was carried out. The grid convergence study was produced by employing two turbulence models, the standard k-ε model and shear stress transport (SST) in ANSYS CFX. Three parameters were investigated: mesh resolution, turbulence model, and power coefficient in the initial CFD, analysis.

Findings

It was found that the mesh resolution and the turbulence model affect the power coefficient results. The power coefficients obtained from the standard k-ε model are 15 to 20 per cent lower than the accuracy of the SST model. Further analysis was performed on both the designed blades using ANSYS CFX and SST turbulence model. The variation in pressure distributions yields to the varying lift coefficient distribution across blade spans. The lift coefficient reached its peak between 0.75 and 0.8 of the blade span where the total lift accelerates with increasing pressure before drastically dropping down at 0.9 onwards due to the escalating rotational velocity of the blades.

Originality/value

The work presents a computational design methodological approach that is entirely original. While this numerical method has proven to be accurate and robust for many traditional tidal turbines, it has now been verified further for CB tidal turbines.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 10 July 2019

Yiwei Wang, Xianghua Huang and Jiaqin Huang

The purpose of the paper is to build a real-time integrated turboprop take-off model which fully takes the interaction between diverse parts of aircraft into consideration…

Abstract

Purpose

The purpose of the paper is to build a real-time integrated turboprop take-off model which fully takes the interaction between diverse parts of aircraft into consideration. Turboprops have the advantage of short take-off distance derived from propeller-wing interaction. Traditional turboprop take-off model is inappropriate because interactions between diverse parts of aircrafts are not fully considered or longer calculation time is required. To make full use of the advantage of short take-off distance, a real-time integrated take-off model is needed for analysing flight performance and developing an integrated propeller-engine-aircraft control system.

Design/methodology/approach

A new integrated three-degree-of-freedom take-off model is developed, which takes a modified propeller model, a wing model and the predominant propeller-wing interaction into account. The propeller model, based on strip theory, overcomes the shortage that the strip theory does not work if the angle of propeller axis and inflow velocity is non-zero. The wing model uses the lifting line method. The proposed propeller-wing interaction model simplifies the complex propeller-wing flow field. Simulations of ATR42 take-off model are conducted in the following three modes: propeller-wing interaction is ignored; influence of propeller on wing is considered only; and propeller-wing interaction is considered.

Findings

Comparison of take-off distances and flight parameters shows that propeller-wing interaction has a vital impact on take-off distance and flight parameters of turboprops.

Practical implications

The real-time integrated take-off model provides time-history flight parameters, which plays an important role in an integrated propeller-engine-aircraft control system to analyse and improve flight performance.

Originality/value

The real-time integrated take-off model is more precise because propeller-wing interaction is considered. Each calculation step costs less than 20 ms, which meets real-time calculation requirements. The modified propeller model overcomes the shortage of strip theory.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 February 2023

Y. Chandukrishna and T.N. Venkatesh

Recent interest in electric aircraft has opened avenues for exploring innovative concepts and designs. Because of its potential to increase wing aerodynamic efficiency, the idea…

Abstract

Purpose

Recent interest in electric aircraft has opened avenues for exploring innovative concepts and designs. Because of its potential to increase wing aerodynamic efficiency, the idea of wing tip-mounted propellers is becoming more popular in the context of electric aircraft. This paper aims to address the question of which configuration, tractor or pusher at wing tip is more beneficial.

Design/methodology/approach

The interactions between the wing and tip-mounted propellers in tractor and pusher configurations have been studied computationally. In this study, the propeller is modeled as a disk, and the blade element method (BEM) coupled with the computational fluid dynamics (CFD)–Reynolds-averaged Navier–Stokes (RANS) solver is used to calculate propeller blade loading recursively. A direct comparison between the wing with tip-mounted propellers in tractor and pusher configurations is made by varying the direction of rotation and thrust.

Findings

Wing with tip-mounted propellers having inboard-up rotation is found to offer less drag in tractor and pusher configurations than those without propeller cases. Wing tip-mounted propeller in tractor configuration with inboard-up rotation offers higher wing aerodynamic efficiency than the other configurations. In tractor and pusher configurations with inboard-up rotating propellers, wing tip vortex attenuation is seen, whereas with outboard-up rotating propellers, the wing tip vortex amplification is observed.

Originality/value

SU2, an open-source CFD tool, is used in this study and BEM is coupled to perform RANS–BEM simulations. Both qualitative and quantitative comparisons were made between the tractor and pusher configurations, which may find its value when a question arises about the aerodynamically best propeller configuration at wing tips.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 April 2024

Mahmoud Taban and Alireza Basohbat Novinzadeh

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of…

Abstract

Purpose

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of the non-actuator method for guiding the projectile to the target. In this method, biologically inspired by the flying concept of the single-winged seed, for instance, that of maple and ash trees, the projectile undergoes a helical motion to scan the region and meet the target in the descent phase. Indeed, the projectile is a decelerator device based on the autorotation flight while it attempts to resemble the seed’s motion using two wings of different spans. There exists a wealth of studies on the stability of the decelerators (e.g. the mono-wing, samara and pararotor), but all of them have assumed the body (exclusive of the wing) to be symmetric and paid no particular attention to the scanning quality of the region. In practice, however, the non-actuator-guided projectiles are asymmetric owing to the presence of detection sensors. This paper aims to present an analytical solution for stability analysis of asymmetric decelerators and apprise the effects of design parameters to improve the scanning quality.

Design/methodology/approach

The approach of this study is to develop a theoretical model consisting of Euler equations and apply a set of non-dimensionalized equations to reduce the number of involved parameters. The obtained governing equations are readily applicable to other decelerator devices, such as the mono-wing, samara and pararotor.

Findings

The results show that the stability of the body can be preserved under certain conditions. Moreover, pertinent conclusions are outlined on the sensitivity of flight behavior to the variation of design parameters.

Originality/value

The analytical solution and sensitivity analysis presented here can efficiently reduce the design cost of the asymmetric decelerator.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 3000