Search results

1 – 2 of 2
Article
Publication date: 3 August 2015

Ribeka Takahashi, David T. Fullwood, Travis M. Rampton, Darrell J. Skousen, Brent L. Adams and Christopher A. Mattson

Microstructure-sensitive design (MSD), for optimal performance of engineering components that are sensitive to material anisotropy, has largely been confined to the realm of…

Abstract

Purpose

Microstructure-sensitive design (MSD), for optimal performance of engineering components that are sensitive to material anisotropy, has largely been confined to the realm of theory. The purpose of this paper is to insert the MSD framework into a finite element environment in order to arrive at a practical tool for improved selection and design of materials for critical engineering situations.

Design/methodology/approach

This study applies the recently developed Hybrid Bishop-Hill (HBH) model to map the yield surface of anisotropic oxygen free electronic copper. Combining this information with the detailed local stresses determined via finite element analysis (FEA), a “configurational yield stress” is determined for the entire component. By varying the material choice/processing conditions and selecting the directionality of anisotropy, an optimal configuration is found.

Findings

The paper provides a new FEA-based framework for MSD for yield-limited situations. The approach identified optimal directionality and processing configurations for three engineering situations that are particularly sensitive to material anisotropy.

Research limitations/implications

The microstructure design space for this study is limited to a selection of eight copper materials produced by a range of processing methods, but is generalizable to many materials that exhibit anisotropic behavior.

Originality/value

The introduction of MSD methodology into a finite element environment is a first step toward a comprehensive designer toolkit for exploiting the anisotropy of general materials (such as metals) in a way that is routinely undertaken in the world of fiber-based composite materials. While the gains are not as sizeable (due to the less-extreme anisotropy), in many applications they may be extremely important.

Details

Engineering Computations, vol. 32 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 August 2015

Mark Messner, Armand Beaudoin and Robert Dodds

The purpose of this paper is to describe several novel techniques for implementing a crystal plasticity (CP) material model in a large deformation, implicit finite element…

Abstract

Purpose

The purpose of this paper is to describe several novel techniques for implementing a crystal plasticity (CP) material model in a large deformation, implicit finite element framework.

Design/methodology/approach

Starting from the key kinematic assumptions of CP, the presentation develops the necessary CP correction terms to several common objective stress rates and the consistent linearization of the stress update algorithm. Connections to models for slip system hardening are isolated from these processes.

Findings

A kinematically consistent implementation is found to require a correction to the stress update to include plastic vorticity developed by slip deformation in polycrystals. A simpler, more direct form for the algorithmic tangent is described. Several numerical examples demonstrate the capabilities and computational efficiency of the formulation.

Research limitations/implications

The implementation assumes isotropic slip system hardening. With simple modifications, the described approach extends readily to anisotropic coupled or uncoupled hardening functions.

Practical implications

The modular formulation and implementation support streamlined development of new models for slip system hardening without modifications of the stress update and algorithmic tangent computations. This implementation is available in the open-source code WARP3D.

Originality/value

In the process of developing the CP formulation, this work realized the need for corrections to the Green-Naghdi and Jaumann objective stress rates to account properly for non-zero plastic vorticity. The paper describes fully the consistent linearization of the stress update algorithm and details a new scheme to implement the model with improved efficiency.

Details

Engineering Computations, vol. 32 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2