Search results

1 – 2 of 2
Article
Publication date: 26 April 2024

Vasudha Hegde, Narendra Chaulagain and Hom Bahadur Tamang

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and…

Abstract

Purpose

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and wildlife conservation. Considering its vast applications, this study aims to design, simulate, fabricate and test a bidirectional acoustic sensor having two cantilever structures coated with piezoresistive material for sensing has been designed, simulated, fabricated and tested.

Design/methodology/approach

The structure is a piezoresistive acoustic pressure sensor, which consists of two Kapton diaphragms with four piezoresistors arranged in Wheatstone bridge arrangement. The applied acoustic pressure causes diaphragm deflection and stress in diaphragm hinge, which is sensed by the piezoresistors positioned on the diaphragm. The piezoresistive material such as carbon or graphene is deposited at maximum stress area. Furthermore, the Wheatstone bridge arrangement has been formed to sense the change in resistance resulting into imbalanced bridge and two cantilever structures add directional properties to the acoustic sensor. The structure is designed, fabricated and tested and the dimensions of the structure are chosen to enable ease of fabrication without clean room facilities. This structure is tested with static and dynamic calibration for variation in resistance leading to bridge output voltage variation and directional properties.

Findings

This paper provides the experimental results that indicate sensor output variation in terms of a Wheatstone bridge output voltage from 0.45 V to 1.618 V for a variation in pressure from 0.59 mbar to 100 mbar. The device is also tested for directionality using vibration source and was found to respond as per the design.

Research limitations/implications

The fabricated devices could not be tested for practical acoustic sources due to lack of facilities. They have been tested for a vibration source in place of acoustic source.

Practical implications

The piezoresistive bidirectional sensor can be used for detection of direction of the sound source.

Social implications

In defense applications, it is important to detect the direction of the acoustic signal. This sensor is suited for such applications.

Originality/value

The present paper discusses a novel yet simple design of a cantilever beam-based bidirectional acoustic pressure sensor. This sensor fabrication does not require sophisticated cleanroom for fabrication and characterization facility for testing. The fabricated device has good repeatability and is able to detect the direction of the acoustic source in external environment.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 April 2023

Tarek Sallam

The purpose of this paper is to present a deep-learning-based beamforming method for phased array weather radars, especially whose antenna arrays are equipped with large number of…

78

Abstract

Purpose

The purpose of this paper is to present a deep-learning-based beamforming method for phased array weather radars, especially whose antenna arrays are equipped with large number of elements, for fast and accurate detection of weather observations.

Design/methodology/approach

The beamforming weights are computed by a convolutional neural network (CNN), which is trained with input–output pairs obtained from the Wiener solution.

Findings

To validate the robustness of the CNN-based beamformer, it is compared with the traditional beamforming methods, namely, Fourier (FR) beamforming and Capon beamforming. Moreover, the CNN is compared with a radial basis function neural network (RBFNN) which is a shallow type of neural network. It is shown that the CNN method has an excellent performance in radar signal simulations compared to the other methods. In addition to simulations, the robustness of the CNN beamformer is further validated by using real weather data collected by the phased array radar at Osaka University (PAR@OU) and compared to, besides the FR and RBFNN methods, the minimum mean square error beamforming method. It is shown that the CNN has the ability to rapidly and accurately detect the reflectivity of the PAR@OU with even less clutter level in comparison to the other methods.

Originality/value

Motivated by the inherit advantages of the CNN, this paper proposes the development of a CNN-based approach to the beamforming of PAR using both simulated and real data. In this paper, the CNN is trained on the optimum weights of Wiener solution. In simulations, it is applied on a large 32 × 32 planar phased array antenna. Moreover, it is operated on real data collected by the PAR@OU.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2