Search results

1 – 10 of over 2000
Article
Publication date: 29 November 2018

Akshay Kumar and S.B. Singh

The purpose of this paper is to deal with a linear multi-state sliding window coherent system which generalizes the consecutive k-out-of-r-from-n:F system in the multi-state case…

Abstract

Purpose

The purpose of this paper is to deal with a linear multi-state sliding window coherent system which generalizes the consecutive k-out-of-r-from-n:F system in the multi-state case. The system has n linearly ordered multi-state elements consisting of m parallel independent and identically distributed elements. Every element of the system can have two states: completely working or totally failed. The system fails if the sum of performance rate is lower than the given weight.

Design/methodology/approach

The authors proposed to compute the signature, MTTF and Barlow–Proschan index with the help of UGF technique of multi-state SWS which consists of m parallel i.i.d. components in each multi-state window.

Findings

In the present study, the authors have evaluated the signature reliability, expected lifetime, cost analysis and Barlow–Proschan index.

Originality/value

In this study, the authors have studied a linear multi-state sliding window system which consists of n ordered multi-state element, and each multi-state element also consists of m parallel windows. The focus of the present paper is to evaluate reliability metrices of the considered system with the help of signature from using the universal generating function.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Content available
Article
Publication date: 1 March 2001

117

Abstract

Details

Structural Survey, vol. 19 no. 1
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 11 October 2021

Mangey Ram, Subhi Tyagi, Akshay Kumar and Nupur Goyal

The purpose of this paper is to design a ring network topology system and alter it into a series–parallel type framework. Then, reliability of the framework is analysed and…

Abstract

Purpose

The purpose of this paper is to design a ring network topology system and alter it into a series–parallel type framework. Then, reliability of the framework is analysed and authors also discussed the signature to analyse the most sensitive component.

Design/methodology/approach

This study presents a ring-shaped network system where this type of topology forms a single continuous pathway for signals through every node. In this study, a system consists of ring network topology is generalized in the series–parallel mixed configuration and reliability characteristics are evaluated with the assistance of universal generating function (UGF) technique. The system consists of wires, repeaters, components or computers and power supply. The wires and repeaters are in series, so, if they fail the whole system will fail and the signals will not go further. The components or computers are connected to each other in parallel configuration. So, the whole system will not fail until the last computer is working. There is also a two-unit power supply system which has one unit in a standby mode. On the failure of first power supply, the second one will start functioning and the whole system fails on the failure of both power supply.

Findings

By the assistance of UGF technique, reliability function of the framework is evaluated. Also, Barlow–Proschan index and expected lifetime for the designed system is estimated by considering a numerical example for the general ring-shaped network system.

Originality/value

UGF technique is very effective for estimating the reliability of a system with complex structure and having two performance rates, i.e. completely failed and perfectly working, or more than two, i.e. multi-state performance. This technique enables to estimate every components contribution in the working and failure of the whole system. A general model of ring-shaped network system is taken and generalized algorithm is drawn for the system. Then a particular numerical example is solved for illustrating the use of this technique.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Content available
Article
Publication date: 1 June 2010

179

Abstract

Details

Structural Survey, vol. 28 no. 2
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 31 December 2007

Markus Ketterl, Robert Mertens and Oliver Vornberger

The purpose of this paper is to is to describe vector graphics for web lectures, focusing on the experiences with Adobe Flash 9 and SVG.

Abstract

Purpose

The purpose of this paper is to is to describe vector graphics for web lectures, focusing on the experiences with Adobe Flash 9 and SVG.

Design/methodology/approach

The paper presents experiences made during the development and everyday use of two versions of the lecture‐recording system virtPresenter. The first of these versions is based on SVG, while the second is based on Adobe Flex2 (Flash 9) technology. The paper points out the advantages vector graphics can bring for web lectures and briefly presents a hypermedia navigation interface for web lectures that is based on SVG. The paper also compares the formats Flash and SVG and concludes with describing changes in workflows for administrators and users that have become possible with Flash.

Findings

Vector graphics are an ideal content format for slide‐based lecture recordings. File sizes can be kept small and graphics can be displayed in superior quality. Information about text and slide objects is stored symbolically, which allows texts to be searched and objects on slides to be used interactively, for example, for navigation purposes. The use of vector graphics for web lectures is, however, a trend that has begun only recently. A major reason for this is that multiple media formats have to be combined in order to replay video and slides.

Originality/value

The paper offers in insight into vector graphics as an ideal content format for slide‐based lecture recordings.

Details

Interactive Technology and Smart Education, vol. 4 no. 4
Type: Research Article
ISSN: 1741-5659

Keywords

Content available
Article
Publication date: 1 September 2004

191

Abstract

Details

Structural Survey, vol. 22 no. 4
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 31 March 2023

Mangey Ram, Akshay Kumar and Sadiya Naaz

The purpose of this paper is to evaluate the reliability and signature reliability of solar panel k-out-of-n-multiplex system with the help of universal generating function.

Abstract

Purpose

The purpose of this paper is to evaluate the reliability and signature reliability of solar panel k-out-of-n-multiplex system with the help of universal generating function.

Design/methodology/approach

Energy scarcity and global warming issues have become important concerns for humanity in recent decades. To solve these problems, various nations work for renewable energy sources (RESs), including sun, breeze, geothermal, wave, radioactive and biofuels. Solar energy is absorbed by solar panels, referred to as photovoltaic panels, which then transform it into electricity that can be used to power buildings or residences. Remote places can be supplied with electricity using these panels. Solar energy is often generated using a solar panel that is connected to an inverter for power supply. As a result, a converter reliability evaluation is frequently required. This paper presents a study on the reliability analysis of k-out-of-n systems with heterogeneous components. In this research, the universal generating function methodology is used to identify the reliability function and signature reliability of the solar array components. This method is commonly used to assess the tail signature and Barlow-Proschan index with independent and identically distributed components.

Findings

The Barlow-Proschan index, tail signature, signature, expected lifetime, expected cost and minimal signature of independent identically distributed are all computed.

Originality/value

This is the first study of solar panel k-out-of-n-multiplex systems to examine the signature reliability with the help of universal generating function techniques with various measures.

Article
Publication date: 3 April 2023

Sadiya Naaz, Mangey Ram and Akshay Kumar

The purpose of this paper is to evaluate the reliability and structure function of refrigeration complex system consisted of four components in complex manner.

Abstract

Purpose

The purpose of this paper is to evaluate the reliability and structure function of refrigeration complex system consisted of four components in complex manner.

Design/methodology/approach

Although, a variety of methodologies have been used to assess the refrigeration system's reliability function that has proven to be effective, the universal generating function approach is the basis of this research study, which is used in the calculation of a domestic refrigeration system with four separate components that are related in series and parallel with a corresponding sample to form a complex machine.

Findings

In this paper, signature reliability of the refrigeration system has been evaluated with the universal generating function technique. There are four components present in the proposed system in complex (series and parallel) manner. The tail signature, signature, Barlow–Proschan index, expected lifetime and expected cost of independent identically distributed are all computed.

Originality/value

This is the first study of domestic refrigeration system to examine the signature reliability with the help of universal generating function techniques with various measures. Refrigeration systems are an essential process in industries and home applications as they perform cooling or the maintain temperature at the desired value. A cycle of refrigeration consists of four main components such as, heat exchange, compression and expansion with a refrigerant flowing through the units within the cycle.

Content available
Article
Publication date: 6 November 2009

157

Abstract

Details

Structural Survey, vol. 27 no. 5
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 12 March 2020

Zahra Hashemzadeh Ghalhari and Ali Zeinal Hamadani

This paper employs new methods to evaluate the availability of multistate series–parallel systems, in which a number of similar components are available in each subsystem.

Abstract

Purpose

This paper employs new methods to evaluate the availability of multistate series–parallel systems, in which a number of similar components are available in each subsystem.

Design/methodology/approach

In this paper, polynomial distribution function (PDF) is combined with universal generating function (UGF) and recursive algorithm (RA) methods to evaluate the availability of multistate series–parallel systems. To achieve this goal, the PDF is initially used to determine the performance rates and the probabilities corresponding to the performance states of the similar components in a subsystem. The obtained results are used to evaluate the system availability via the UGF and RA methods.

Findings

It is shown that the combined UGF and PDF (UGF-PDF) and also the combined RA and PDF (RA-PDF) methods require less computational time than did the UGF and RA methods, respectively.

Originality/value

In the UGF and RA methods, there is no difference in system availability evaluation time when considering similar or different components in each subsystem. But the proposed methods in this article do not have this restrictions; therefore, these methods can be used to evaluate system availability in optimal redundancy allocation problems. As a result, using these methods reduces the optimization time of those problems.

Details

International Journal of Quality & Reliability Management, vol. 37 no. 6/7
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 2000