Search results

1 – 10 of 837
Article
Publication date: 8 August 2016

Mica Grujicic, Jennifer Snipes, S Ramaswami, Vasudeva Avuthu, Chian-Fong Yen and Bryan Cheeseman

Traditionally, an armor-grade composite is based on a two-dimensional (2D) architecture of its fiber reinforcements. However, various experimental investigations have shown that…

Abstract

Purpose

Traditionally, an armor-grade composite is based on a two-dimensional (2D) architecture of its fiber reinforcements. However, various experimental investigations have shown that armor-grade composites based on 2D-reinforcement architectures tend to display inferior through-the-thickness mechanical properties, compromising their ballistic performance. To overcome this problem, armor-grade composites based on three-dimensional (3D) fiber-reinforcement architectures have recently been investigated experimentally. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, continuum-level material models are derived, parameterized and validated for armor-grade composite materials, having four (two 2D and two 3D) prototypical reinforcement architectures based on oriented ultra-high molecular-weight polyethylene fibers. To properly and accurately account for the effect of the reinforcement architecture, the appropriate unit cells (within which the constituent materials and their morphologies are represented explicitly) are constructed and subjected to a series of virtual mechanical tests (VMTs). The results obtained are used within a post-processing analysis to derive and parameterize the corresponding homogenized-material models. One of these models (specifically, the one for 0°/90° cross-collimated fiber architecture) was directly validated by comparing its predictions with the experimental counterparts. The other models are validated by examining their physical soundness and details of their predictions. Lastly, the models are integrated as user-material subroutines, and linked with a commercial finite-element package, in order to carry out a transient non-linear dynamics analysis of ballistic transverse impact of armor-grade composite-material panels with different reinforcement architectures.

Findings

The results obtained clearly revealed the role the reinforcement architecture plays in the overall ballistic limit of the armor panel, as well as in its structural and damage/failure response.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to assess, computationally, the utility and effectiveness of 3D fiber-reinforcement architectures for ballistic-impact applications.

Details

International Journal of Structural Integrity, vol. 7 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 May 2015

Mica Grujicic, Subrahmanian Ramaswami, Jennifer Snipes, Rohan Galgalikar, Ramin Yavari, Chian-Fong Yen, Bryan Cheeseman and Jonathan Montgomery

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been…

Abstract

Purpose

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic limit (i.e. penetration resistance) of the weld.

Design/methodology/approach

The original model consists of five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: electro-dynamics of the welding-gun; radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and spatial distribution of the as-welded material mechanical properties. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones.

Findings

The upgraded GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to establish, using computational modeling, functional relationships between the GMAW process parameters and the mechanical properties controlling the ballistic limit of the resulting weld.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 May 2019

George Bikakis, Nikolaos Tsigkros, Emilios Sideridis and Alexander Savaidis

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using…

Abstract

Purpose

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using the ANSYS LS-DYNA explicit nonlinear analysis software. The panels are subjected to central normal high velocity ballistic impact by a cylindrical projectile.

Design/methodology/approach

Using validated finite element models, the influence of the constituent metal alloy on the ballistic resistance of the fiber-metal laminates and the monolithic plates is studied. Six steel alloys are examined, namely, 304 stainless steel, 1010, 1080, 4340, A36 steel and DP 590 dual phase steel. A comparison with the response of GLAss REinforced plates is also implemented.

Findings

It is found that the ballistic limits of the panels can be substantially affected by the constituent alloy. The stainless steel based panels offer the highest ballistic resistance followed by the A36 steel based panels which in turn have higher ballistic resistance than the 2024-T3 aluminum based panels. The A36 steel based panels have higher ballistic limit than the 1010 steel based panels which in turn have higher ballistic limit than the 1080 steel based panels. The behavior of characteristic impact variables such as the impact load, the absorbed impact energy and the projectile’s displacement during the ballistic impact phenomenon is analyzed.

Originality/value

The ballistic resistance of the aforementioned steel fiber-metal laminates has not been studied previously. This study contributes to the scientific knowledge concerning the impact response of steel-based fiber-metal laminates and to the construction of impact resistant structures.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 October 2018

Yihua Xiao, Huanghuang Dong, Haifei Zhan and Aihua Zhu

Metal plates are usually used as protective shields of engineering structures, which probably undergo multiple projectile impacts resulting from gunshot and blast. Though a large…

Abstract

Purpose

Metal plates are usually used as protective shields of engineering structures, which probably undergo multiple projectile impacts resulting from gunshot and blast. Though a large number of studies have been conducted on the performance of metal plates under a single projectile impact, few studies have explored their performance under multiple projectile impacts. This paper aims to explore the performance of Weldox 460 E steel plates against multiple projectile impacts through numerical simulation.

Design/methodology/approach

A three-dimensional coupled finite element (FE) and smoothed particle hydrodynamics (SPH) model was developed to simulate the perforation of a 12-mm-thick Weldox 460 E steel plate by an ogival projectile. The model was verified by existing experimental data. Then, it was extended to investigate the same target plate subjected to impacts with multiple projectiles. Simultaneous impacts with different number of projectiles, as well as sequential impacts with two projectiles, were considered.

Findings

Effects of spacing between projectiles on residual velocity of projectile, ballistic limit and failure mode of target were revealed for simultaneous impacts. Effects of spacing and axial distance between projectiles on residual velocity of projectile were explored for sequential impacts.

Originality/value

This work developed an advanced FE–SPH model to simulate perforation of steel plates by multiple projectiles, and revealed the effects of multiple impacts on ballistic performance of steel plates. It provides guidance for the design of protective structures/shields in various engineering applications.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

Mica Grujicic, Jennifer Snipes and S. Ramaswami

The purpose of this paper is to model a nacre-like composite material, consisting of tablets and polyurea tablet/tablet interfaces, B4C. This composite material is being…

Abstract

Purpose

The purpose of this paper is to model a nacre-like composite material, consisting of tablets and polyurea tablet/tablet interfaces, B4C. This composite material is being considered in the construction of the so-called backing-plate, a layer within a multi-functional/multi-layer armor system.

Design/methodology/approach

Considering the basic functions of the backing-plate (i.e. to provide structural support for the ceramic-strike-face and to stop a high-velocity projectile and the accompanying fragments) in such an armor system, the composite-material architecture is optimized with respect to simultaneously achieving high flexural stiffness and high ballistic-penetration resistance. Flexural stiffness and penetration resistance, for a given architecture of the nacre-like composite material, are assessed using a series of transient non-linear dynamics finite-element analyses. The suitability of the optimized composite material for use in backing-plate applications is then evaluated by comparing its performance against that of the rolled homogeneous armor (RHA), a common choice for the backing-plate material.

Findings

The results obtained established: a trade-off between the requirements for a high flexural stiffness and a high ballistic-penetration resistance in the nacre-like composite material; and overall superiority of the subject composite material over the RHA when used in the construction of the backing-plate within multi-functional/multi-layer armor systems.

Originality/value

This study extends the authors previous research on nacre-mimetic armor to optimize the architecture of the armor with respect to its flexural stiffness and ballistic-penetration resistance, so that these properties could be increased over the levels attained in the current choice (RHA) for the backing layer of multi-functional/multi-layer armor.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 February 2017

Mica Grujicic, S. Ramaswami and Jennifer Snipes

Nacre is a biological material constituting the innermost layer of the shells of gastropods and bivalves. It consists of polygonal tablets of aragonite, tessellated to form…

Abstract

Purpose

Nacre is a biological material constituting the innermost layer of the shells of gastropods and bivalves. It consists of polygonal tablets of aragonite, tessellated to form individual layers and having the adjacent layers as well as the tablets within a layer bonded by a biopolymer. Due to its highly complex hierarchical microstructure, nacre possesses an outstanding combination of mechanical properties, the properties which are far superior to the ones that are predicted using techniques such as the rule of mixtures. Given these properties, a composite armor the structure of which mimics that of nacre may have improved performance over a monolithic armor having a similar composition and an identical areal density. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, an attempt is made to model a nacre-like composite armor consisting of B4C tablets and polyurea tablet/tablet interfaces. The armor is next tested with respect to impact by a solid right circular cylindrical (SRCC) rigid projectile, using a transient non-linear dynamics finite-element analysis. The ballistic-impact response and the penetration resistance of the armor are then compared with that of the B4C monolithic armor having an identical areal density. Furthermore, the effect of various nacre microstructural features (e.g. surface profiling, micron-scale asperities, mineral bridges between the overlapping tablets lying in adjacent layers, and B4C nano-crystallinity) on the ballistic-penetration resistance of the composite armor is investigated in order to identify an optimal nacre-like composite armor architecture having the largest penetration resistance.

Findings

The results obtained clearly show that a nacre-like armor possesses a superior penetration resistance relative to its monolithic counterpart, and that the nacre microstructural features considered play a critical role in the armor-penetration resistance.

Originality/value

The present work indicates that for a given choice of armor material, penetration resistance may be improved by choosing a structure resembling that of nacre.

Details

International Journal of Structural Integrity, vol. 8 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 September 2021

Y.J. Liu, Z.H. Wang and H.M. Wen

The purpose of this paper is to predict the response and perforation of fibre metal laminates (FMLs) subjected to impact by projectiles at different velocities.

Abstract

Purpose

The purpose of this paper is to predict the response and perforation of fibre metal laminates (FMLs) subjected to impact by projectiles at different velocities.

Design/methodology/approach

A finite element (FE) model is constructed in which recently proposed dynamic constitutive models for fibre reinforced plastic (FRP) laminates and metals are used. Moreover, a recently developed dynamic cohesive element constitutive model is also used to simulate the debonding between FRP laminates and metal sheets. The FE model is first validated against the test data for glass laminate aluminum reinforced epoxy (GLARE) both under dropped object loading and ballistic impact, then used to perform a parametric study on the influence of projectile nose shape on the perforation of FMLs.

Findings

It is found that the present model predicts well the response and perforation of GLARE subjected to impact loading in terms of load-time history, load-displacement curve, residual velocity and failure pattern. It is also found that projectile nose shape has a considerable effect on the perforation of GLARE FMLs and that the ballistic limit is the highest for a flat-ended projectile whilst for a conical-nosed missile the resistance to perforation is the least.

Originality/value

Recently developed constitutive models for FRPs and metals, together with cohesive element model which considers strain rate effect, are used in the FE model to predict the behaviour of FMLs struck by projectiles in a wider range of impact velocities; the present model is advantageous over such existing models as Johnson-Cook (JC) + Chang-Chang and JC (+BW) + MAT162 in terms of failure pattern though they produce similar results for residual velocity.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 1995

Bert Chapman

The conclusion of the Cold War's U.S.‐Soviet superpower rivalry may have ended the threat of a global nuclear military confrontation involving these powers. It did not, however…

Abstract

The conclusion of the Cold War's U.S.‐Soviet superpower rivalry may have ended the threat of a global nuclear military confrontation involving these powers. It did not, however, result in the termination of international regional conflicts or of military threats to U.S. national security. The collapse of a world political and strategic system ostensibly polarized between two ideologically contrasting superpowers has resulted in the emergence of numerous threats to regional and global order.

Details

Reference Services Review, vol. 23 no. 1
Type: Research Article
ISSN: 0090-7324

Article
Publication date: 11 March 2016

Mica Grujicic, Jennifer Snipes, S. Ramaswami, Vasudeva Avuthu, Chian-Fong Yen and Bryan Cheeseman

To overcome the problem of inferior through-the-thickness mechanical properties displayed by armor-grade composites based on 2-D reinforcement architectures, armor-grade…

Abstract

Purpose

To overcome the problem of inferior through-the-thickness mechanical properties displayed by armor-grade composites based on 2-D reinforcement architectures, armor-grade composites based on 3D fiber-reinforcement architectures have recently been investigated experimentally.

Design/methodology/approach

The subject of the present work is armor-grade composite materials reinforced using ultra-high-molecular-weight polyethylene fibers and having four (two 2D and two 3D) prototypical architectures, as well as the derivation of the corresponding material models. The effect of the reinforcement architecture is accounted for by constructing the appropriate unit cells (within which the constituent materials and their morphologies are represented explicitly) and subjecting them to a series of virtual mechanical tests. The results obtained are used within a post-processing analysis to derive and parameterize the corresponding homogenized-material models. One of these models (specifically, the one for 0°/90° cross-collimated fiber architecture) was directly validated by comparing its predictions with the experimental counterparts. The other models are validated by examining their physical soundness and details of their predictions. Lastly, the models are integrated as user-material subroutines, and linked with a commercial finite-element package, in order to carry out a transient non-linear dynamics analysis of ballistic transverse impact of armor-grade composite-material panels with different reinforcement architectures.

Findings

It is found that the reinforcement architecture plays a critical role in the overall ballistic limit of the armor panel, as well as in its structural and damage/failure response.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to assess, computationally, the utility and effectiveness of 3D fiber-reinforcement architectures for ballistic impact applications.

Details

Engineering Computations, vol. 33 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 15 August 2022

Yuxin Tang, Ang Liu, Chen Zhao, Peng Ren and Zitao Guo

Fragment impact is one of the main threats for the safety of storage tank in aircraft. This study aims to investigate the influence of inserted baffle on hydrodynamic ram (HRAM…

Abstract

Purpose

Fragment impact is one of the main threats for the safety of storage tank in aircraft. This study aims to investigate the influence of inserted baffle on hydrodynamic ram (HRAM) and damage of storage tank to optimize the protective performance of storage tank under fragment impact.

Design/methodology/approach

The characteristics of initial shock wave, cavity evolution, velocity attenuation of fragment and anti-penetration performance of baffle-inserted tanks were evaluated by experimental and numerical methods.

Findings

Results indicated that the inserted baffle in tank could significantly increase the velocity attenuation rate of fragment in water. The volume of the second cavity caused by the inserted baffle rapidly decreased with the baffle position moving backward. For the baffle-inserted tank, the deformation of the front and rear walls was substantially weakened, and the alleviating effect for front wall was more significant. Comparing with the ordinary storage tank, the inserted baffle at normalized position 0.25, 0.5 and 0.75 in tank made the ballistic limit velocity of storage tank increasing by 118.3%, 20.0% and 54.0%, respectively.

Originality/value

The findings of this work illustrating the HRAM history and damage map of storage tanks after inserted baffle could provide a convenient approach to improve the anti-penetration performance of storage tanks effectively.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 837