Search results

1 – 10 of 18
Case study
Publication date: 5 April 2024

Susan V. White and Karen Hallows

This case was researched using publicly available sources, including Mercury Systems financial filings and press releases, news stories about the seasoned equity offering…

Abstract

Research methodology

This case was researched using publicly available sources, including Mercury Systems financial filings and press releases, news stories about the seasoned equity offering, financial information from Bloomberg and industry information from IBISWorld Industry Reports and articles related to seasoned/secondary equity offerings, intangible asset valuation and the use of revolving lines of credit. Quotes are taken from Mercury financial reports and press releases and express the (optimistic) opinions of company executives.

Case overview/synopsis

Mercury Systems, a technology company in the aerospace and defense industry, announced a six million share seasoned stock offering in June 2019. This resulted in a 6% stock price decrease. A stock price decrease is a typical event when a firm announces the issuance of new common shares, but with Mercury Systems, there were concerns about how much money the firm needed to fund its strategy of growth through acquisitions. If internally generated funds were not sufficient, should the firm issue debt or have another seasoned equity issue? Students will look at the objectives and success of the most recent seasoned equity issue, determine future funds needs and how the firm should finance these needs.

Complexity academic level

This case is appropriate for undergraduate and graduate students in corporate finance electives. Typically, topics such as seasoned equity offerings are not covered in introductory courses, so this is recommended for finance electives. Even in advanced finance courses, sometimes there is insufficient time to cover seasoned equity offerings.

Details

The CASE Journal, vol. ahead-of-print no. ahead-of-print
Type: Case Study
ISSN: 1544-9106

Keywords

Article
Publication date: 18 December 2023

Hamdi Ercan, Cüneyt Öztürk and Mustafa Akın

This paper aims to assess the impact of electrifying the environmental control system (ECS) and ice protection system (IPS), the primary pneumatic system consumers in a…

Abstract

Purpose

This paper aims to assess the impact of electrifying the environmental control system (ECS) and ice protection system (IPS), the primary pneumatic system consumers in a conventional commercial transport aircraft, on aircraft weight, range, and fuel consumption.

Design/methodology/approach

The case study was carried out on Airbus A321-200 aircraft. Design, modelling and analysis processes were carried out on Pacelab SysArc software. Conventional and electrical ECS and IPS architectures were modelled and analysed considering different temperature profiles.

Findings

The simulation results have shown that the aircraft model with ±270 VDC ECS and IPS architecture is lighter, has a more extended range and has less relative fuel consumption. In addition, the simulation results showed that the maximum range and relative fuel economy of all three aircraft models increased slightly as the temperature increased.

Practical implications

Considering the findings in this paper, it is seen that the electrification of the conventional pneumatic system in aircraft has positive contributions in terms of weight, power consumption and fuel consumption.

Social implications

The positive contributions in terms of weight, power consumption and fuel consumption in aircraft will be direct environmental and economic contributions.

Originality/value

Apart from the conventional ECS and IPS of the aircraft, two electrical architectures, 230 VAC and ±270 VDC, were modelled and analysed. To see the effects of the three models created in different temperature profiles, analyses were done for cold day, ISA standard day and hot day temperature profiles.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 April 2024

Erol Can and Ugur Kilic

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high…

Abstract

Purpose

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high frequency for electrical devices is used to reduce the weight of the cables in the aircraft and spacecraft because of the skin effect. In the high-frequency system, a thinner cable cross-section is used, and a great weight reduction occurs in the aircraft. So, fuel economy, less and late wear of the materials (landing gear, etc.) can be obtained with decreasing weight. This paper aims to present the development of a functional multilevel inverter (FMLI) with fractional sinus pulse width modulation (FSPWM) and a reduced number of switches to provide high-frequency and quality electrical energy conversion.

Design/methodology/approach

After the production of FSPWM for FMLI with a reduced component, which, to the best of the authors’ knowledge, is presented for the first time in this study, is explained step by step, and eight operating states are given according to different FSPWMs operating the circuit. The designed inverter and modulation technique are compared by testing the conventional modular multilevel inverter on different loads.

Findings

According to application results, it is seen that there is a 50% reduction in cross-section from 100 Hz to 400 Hz with the skin effect. At 1000 Hz, there is a 90% cross-section reduction. The decrease can be in cable weights that may occur in aircraft from 10 kg to 100 kg according to different frequencies. It causes less harmonic distortion than conventional converters. This supports the safer operation of the system. Compared to the traditional system, the proposed system provides more amplitude in converting the source to alternating voltage and increases the efficiency.

Practical implications

FSPWM is developed for multilevel inverters with reduced components at the high frequency and cascaded switching studies in the power electronics of aircraft.

Social implications

Although the proposed system has less current and power loss as mentioned in the previous sections, it contains fewer power elements than conventional inverters that are equivalent for different hardware levels. This not only reduces the cost of the system but also provides ease of maintenance. To reduce the cable load in aircraft and create more efficient working conditions, 400 Hz alternative voltage is used. The proposed system causes less losses and lower harmonic distortions than traditional systems. This will reduce possible malfunctions and contribute to aircraft reliability for passengers and cargo. As technology develops, it is revealed that the proposed inverter system will be more efficient than traditional inverters when devices operating at frequencies higher than 400 Hz are used. With the proposed inverter, safer operation will be ensured, while there will be less energy loss, less fuel consumption and less carbon emissions to the environment.

Originality/value

The proposed inverter structure shows that it can provide energy transmission for electrical devices in space and aircraft by using the skin effect. It also contains less power elements than the traditional inverters, which are equivalent for different levels of hardware.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2023

Preeti Godabole and Girish Bhole

The main purpose of the paper is timing analysis of mixed critical applications on the multicore system to identify an efficient task scheduling mechanism to achieve three main…

Abstract

Purpose

The main purpose of the paper is timing analysis of mixed critical applications on the multicore system to identify an efficient task scheduling mechanism to achieve three main objectives improving schedulability, achieving reliability and minimizing the number of cores used. The rise in transient faults in embedded systems due to the use of low-cost processors has led to the use of fault-tolerant scheduling and mapping techniques.

Design/methodology/approach

The paper opted for a simulation-based study. The simulation of mixed critical applications, like air traffic control systems and synthetic workloads, is carried out using a litmus-real time testbed on an Ubuntu machine. The heuristic algorithms for task allocation based on utilization factors and task criticalities are proposed for partitioned approaches with multiple objectives.

Findings

Both partitioned earliest deadline first (EDF) with the utilization-based heuristic and EDF-virtual deadline (VD) with a criticality-based heuristic for allocation works well, as it schedules the air traffic system with a 98% success ratio (SR) using only three processor cores with transient faults being handled by the active backup of the tasks. With synthetic task loads, the proposed criticality-based heuristic works well with EDF-VD, as the SR is 94%. The validation of the proposed heuristic is done with a global and partitioned approach of scheduling, considering active backups to make the system reliable. There is an improvement in SR by 11% as compared to the global approach and a 17% improvement in comparison with the partitioned fixed-priority approach with only three processor cores being used.

Research limitations/implications

The simulations of mixed critical tasks are carried out on a real-time kernel based on Linux and are generalizable in Linux-based environments.

Practical implications

The rise in transient faults in embedded systems due to the use of low-cost processors has led to the use of fault-tolerant scheduling and mapping techniques.

Originality/value

This paper fulfills an identified need to have multi-objective task scheduling in a mixed critical system. The timing analysis helps to identify performance risks and assess alternative architectures used to achieve reliability in terms of transient faults.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 29 April 2024

Qiuqi Wu, Youchao Sun and Man Xu

About 70% of all aircraft accidents are caused by human–machine interaction, thus identifying and quantifying performance shaping factors is a significant challenge in the study…

Abstract

Purpose

About 70% of all aircraft accidents are caused by human–machine interaction, thus identifying and quantifying performance shaping factors is a significant challenge in the study of human reliability. An information flow field model of human–machine interaction is put forward to help better pinpoint the factors influencing performance and to make up for the lack of a model of information flow and feedback processes in the aircraft cockpit. To enhance the efficacy of the human–machine interaction, this paper aims to examine the important coupling factors in the system using the findings of the simulation.

Design/methodology/approach

The performance-shaping factors were retrieved from the model, which was created to thoroughly describe the information flow. The coupling degree between the performance shaping factors was calculated, and simulation and sensitivity analysis are based on system dynamics.

Findings

The results show that the efficacy of human–computer interaction is significantly influenced by individual important factors and coupling factors. To decrease the frequency of accidents after seven hours, attention should be paid to these factors.

Originality/value

The novelty of this work lies in proposing a theoretical model of cockpit information flow and using system dynamics to analyse the effect of the factors in the human–machine loop on human–machine efficacy.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Case study
Publication date: 20 March 2024

Satyanandini Arjunan, Minu Zachariah and Prathima K. Bhat

Alpha Design Technologies Private Limited (ADTL) was started in 2004 by Colonel H.S. Shankar after his retirement from services in the Indian Army and Bharat Electronics Limited…

Abstract

Learning outcomes

Alpha Design Technologies Private Limited (ADTL) was started in 2004 by Colonel H.S. Shankar after his retirement from services in the Indian Army and Bharat Electronics Limited (BEL). Aggressively growing the company from US$0.04m in 2004 to US$100m in 2022, he proved that age was not a barrier to success in entrepreneurship. His aspirations were to gain a greater presence in foreign markets through higher exports. After reading this case study, the students will be able to understand how the defence sector evolved in India and the role of private-sector enterprises; recognise the risks and opportunities in the changing dynamics of defence sector in India; believe that the ideas and capabilities of an entrepreneur increase with relevant previous experiences; appreciate the ambition and managerial capabilities of an entrepreneur even at the age of 60; apply Ajzen’s theory of planned behaviour on the entrepreneurial journey of Shankar and formulate strategies for growth.

Case overview/synopsis

Started in the year 2004, ADTL specialises in manufacturing defence-related products. ADTL was cofounded by Shankar, at the age of 60. His experience of working with the Indian Army and BEL in various capacities gave him the proficiency to start a venture on his own after his retirement. The ecosystem in India was favourable for ADTL as the Government opened up the defence sector for private players. Nevertheless, age was not a barrier for this senior citizen to tap the opportunity and work aggressively to grow his venture from US$0.04m in 2004 to US$100m in 2022. By 2023, ADTL had an employee strength of 1,200 including 650 engineers, and they emerged as a market leader in Software Defined Radio space. They manufactured around 200 different products for defence and space. ADTL exported 60% of the defence products to countries such as Israel, the USA and Germany. Moving forward, the dream for Shankar was to make a mark in the defence geography of the world through ADTL, by improving its export volumes and also through strategic alliances.

Complexity academic level

This case study can be taught to Master of Business Administration/postgraduate degree in management students as a part of the introductory course on entrepreneurship and strategy. This case study can be used specifically to make the students understand the role of private sector in the manufacturing of defence products after the liberalisation policy of the Government of India. The intention was not only to protect the nation from the threat posed by neighbouring countries but also to promote exports of defence products to other countries to improve foreign exchange earnings.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 3: Entrepreneurship.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 13 February 2024

José Nogueira da Mata Filho, Antonio Celio Pereira de Mesquita, Fernando Teixeira Mendes Abrahão and Guilherme C. Rocha

This paper aims to explore the optimization process involved in the aircraft maintenance allocation and packing problem. The aircraft industry misses a part of the optimization…

Abstract

Purpose

This paper aims to explore the optimization process involved in the aircraft maintenance allocation and packing problem. The aircraft industry misses a part of the optimization potential while developing maintenance plans. This research provides the modeling foundation for the missing part considering the failure behavior of components, costs involved with all maintenance tasks and opportunity costs.

Design/methodology/approach

The study models the cost-effectiveness of support against the availability to come up with an optimization problem. The mathematical problem was solved with an exact algorithm. Experiments were performed with real field and synthetically generated data, to validate the correctness of the model and its potential to provide more accurate and better engineered maintenance plans.

Findings

The solution procedure provided excellent results by enhancing the overall arrangement of the tasks, resulting in higher availability rates and a substantial decrease in total maintenance costs. In terms of situational awareness, it provides the user with the flexibility to better manage resource constraints while still achieving optimal results.

Originality/value

This is an innovative research providing a state-of-the-art mathematical model and an algorithm for efficiently solving a task allocation and packing problem by incorporating components’ due flight time, failure probability, task relationships, smart allocation of common preparation tasks, operational profile and resource limitations.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 15 September 2023

Suzan Alaswad and Sinan Salman

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively…

Abstract

Purpose

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.

Design/methodology/approach

This paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.

Findings

When the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.

Originality/value

Most of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 November 2023

Huan Wang, Daao Wang, Peng Wang and Zhigeng Fang

The purpose of this research is to provide a theoretical framework for complex equipment quality risk evaluation. The primary aim of the framework is to enhance the ability to…

Abstract

Purpose

The purpose of this research is to provide a theoretical framework for complex equipment quality risk evaluation. The primary aim of the framework is to enhance the ability to identify risks and improve risk control efficiency during the development phase.

Design/methodology/approach

A novel framework for quality risk evaluation in complex equipment is proposed, which integrates probabilistic hesitant fuzzy set-quality function deployment (PHFS-QFD) and grey clustering. PHFS-QFD is applied to identify the quality risk factors, and grey clustering is used to evaluate quality risks in cases of poor quality information during the development stage. The unfolding function of QFD is applied to simplify complex evaluation problems.

Findings

The methodology presents an innovative approach to quality risk evaluation for complex equipment development. The case analysis demonstrates that this method can efficiently evaluate the quality risks for aircraft development and systematically trace back the risk factors through hierarchical relationships. In comparison to traditional failure mode and effects analysis methods for quality risk assessment, this approach exhibits superior effectiveness and reliability in managing quality risks for complex equipment development.

Originality/value

This study contributes to the field by introducing a novel theoretical framework that combines PHFS-QFD and grey clustering. The integration of these approaches significantly improves the quality risk evaluation process for complex equipment development, overcoming challenges related to data scarcity and simplifying the assessment of intricate systems.

Details

Grey Systems: Theory and Application, vol. 14 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 5 October 2023

Oke Hendra, Benny Kurnianto and Ika Endrawijaya

This study aimed to develop an adapted collaborative governance model for aviation human resource development in Indonesia's approved training organisations (ATO), considering the…

Abstract

Purpose

This study aimed to develop an adapted collaborative governance model for aviation human resource development in Indonesia's approved training organisations (ATO), considering the expected changes in the industry due to advanced technologies. The model, based on Ansell and Gash's approach, emphasizes multi-stakeholder collaboration to ensure workforce development aligns with industry and regulatory standards and accommodates technological advancements.

Design/methodology/approach

Qualitative methods, such as in-depth interviews and focus group discussions, were employed to collect and analyse data.

Findings

The results indicated that collaborative governance is a valuable tool for cultivating competent human resources and facilitating industry improvement in the face of rapid technological change.

Originality/value

The proposed model contributes significantly to the field by promoting inclusive and effective human resource development through the Centre for Aviation Human Resource Development (CAHRD), thereby preparing the Indonesian aviation industry for the impact of advanced technologies. Furthermore, this study contributes to the enhancement of Ansell and Gash's collaborative governance theoretical framework by effectively addressing its empirical gaps concerning vocational education and training challenges within Indonesia's air transportation sector.

Details

Higher Education, Skills and Work-Based Learning, vol. 14 no. 2
Type: Research Article
ISSN: 2042-3896

Keywords

1 – 10 of 18