Search results

1 – 10 of 627
Article
Publication date: 11 July 2023

Yair Wiseman

Nowadays, transportation authorities in various countries are in tension as to whether to invest in railroads or roads. There are arguments for each side, and in the end, each…

Abstract

Purpose

Nowadays, transportation authorities in various countries are in tension as to whether to invest in railroads or roads. There are arguments for each side, and in the end, each transportation authority reaches a kind of balance between the investments. This study aims to anticipate how autonomous vehicles will influence this decision.

Design/methodology/approach

The roads' capacity in the era of autonomous vehicles is assessed and research has concluded that the anticipated increase in road capacity will encourage transportation authorities to invest much more in roads than in railroads.

Findings

The appearance of the autonomous vehicles will significantly change the balance in favor of the roads, because the roads' capacity will be increased substantially so the roads will be able to accommodate many more vehicles.

Research limitations/implications

Currently, autonomous vehicles are still very rare.

Practical implications

The impact of autonomous vehicles on the decision whether to build more roads is explained.

Originality/value

The study explained why the transportation authorities in the various countries will be more inclined to switch to road construction and why the transition to more roads and fewer railroads will likely be done gradually as more autonomous vehicles enter service.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 31 October 2023

Zhizhong Guo, Fei Liu, Yuze Shang, Zhe Li and Ping Qin

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance…

Abstract

Purpose

This research aims to present a novel cooperative control architecture designed specifically for roads with variations in height and curvature. The primary objective is to enhance the longitudinal and lateral tracking accuracy of the vehicle.

Design/methodology/approach

In addressing the challenges posed by time-varying road information and vehicle dynamics parameters, a combination of model predictive control (MPC) and active disturbance rejection control (ADRC) is employed in this study. A coupled controller based on the authors’ model was developed by utilizing the capabilities of MPC and ADRC. Emphasis is placed on the ramifications of road undulations and changes in curvature concerning control effectiveness. Recognizing these factors as disturbances, measures are taken to offset their influences within the system. Load transfer due to variations in road parameters has been considered and integrated into the design of the authors’ synergistic architecture.

Findings

The framework's efficacy is validated through hardware-in-the-loop simulation. Experimental results show that the integrated controller is more robust than conventional MPC and PID controllers. Consequently, the integrated controller improves the vehicle's driving stability and safety.

Originality/value

The proposed coupled control strategy notably enhances vehicle stability and reduces slip concerns. A tailored model is introduced integrating a control strategy based on MPC and ADRC which takes into account vertical and longitudinal force variations and allowing it to effectively cope with complex scenarios and multifaceted constraints problems.

Open Access
Article
Publication date: 21 July 2023

Harry Edelman, Joel Stenroos, Jorge Peña Queralta, David Hästbacka, Jani Oksanen, Tomi Westerlund and Juha Röning

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the…

Abstract

Purpose

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the rapid advance in the field of autonomous drones, the development of ground infrastructure has received less attention. Contemporary airport design offers potential solutions for the infrastructure serving autonomous drone services. To that end, this paper aims to construct a framework for connecting air and ground operations for autonomous drone services. Furthermore, the paper defines the minimum facilities needed to support unmanned aerial vehicles for autonomous logistics and the collection of aerial data.

Design/methodology/approach

The paper reviews the state-of-the-art in airport design literature as the basis for analysing the guidelines of manned aviation applicable to the development of ground infrastructure for autonomous drone services. Socio-technical system analysis was used for identifying the service needs of drones.

Findings

The key findings are functional modularity based on the principles of airport design applies to micro-airports and modular service functions can be connected efficiently with an autonomous ground handling system in a sustainable manner addressing the concerns on maintenance, reliability and lifecycle.

Research limitations/implications

As the study was limited to the airport design literature findings, the evolution of solutions may provide features supporting deviating approaches. The role of autonomy and cloud-based service processes are quintessentially different from the conventional airport design and are likely to impact real-life solutions as the area of future research.

Practical implications

The findings of this study provided a framework for establishing the connection between the airside and the landside for the operations of autonomous aerial services. The lack of such framework and ground infrastructure has hindered the large-scale adoption and easy-to-use solutions for sustainable logistics and aerial data collection for decision-making in the built environment.

Social implications

The evolution of future autonomous aerial services should be accessible to all users, “democratising” the use of drones. The data collected by drones should comply with the privacy-preserving use of the data. The proposed ground infrastructure can contribute to offloading, storing and handling aerial data to support drone services’ acceptability.

Originality/value

To the best of the authors’ knowledge, the paper describes the first design framework for creating a design concept for a modular and autonomous micro-airport system for unmanned aviation based on the applied functions of full-size conventional airports.

Details

Facilities , vol. 41 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 20 February 2024

I Gede Mahatma Yuda Bakti, Sik Sumaedi, Medi Yarmen, Marlina Pandin, Aris Yaman, Rahmi Kartika Jati and Mauludin Hidayat

Recently, autonomous vehicles (AV) acceptance has been studied intensively. This paper aims to map and analyze the bibliometric characteristics of AV acceptance literature…

Abstract

Purpose

Recently, autonomous vehicles (AV) acceptance has been studied intensively. This paper aims to map and analyze the bibliometric characteristics of AV acceptance literature. Furthermore, this research aims to identify research gaps and propose future research opportunities.

Design/methodology/approach

The bibliometric analysis was performed. Scopus database was used as the source of the literature. This study selected and analyzed 297 AV acceptance papers. The performance and science mapping analysis were performed.

Findings

The developed countries tended to dominate the topic. The publication outlet tended to be in transportation or technology journals. There were four research themes in existing literature. Technology acceptance model (TAM) and UTAUT2 tended to be used for explaining AV acceptance. AV acceptance studies tended to use two types of psychological concepts for understanding AV acceptance, namely risk related concepts and functional utilitarian benefit related concepts. In the context of research design, quantitative approach tended to be used. Self-driving feature was the most exploited feature of AV in the existing literature. Three research gaps were mapped and future research opportunities were proposed.

Practical implications

This paper provided a comprehensive information that allowed scientists to develop future research on AV acceptance.

Originality/value

There is lack of paper that discussed the bibliometric characteristics of AV acceptance literature. This paper fulfilled the gap.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Content available
Article
Publication date: 12 December 2023

Mustafa Çimen, Damla Benli, Merve İbiş Bozyel and Mehmet Soysal

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation…

Abstract

Purpose

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation operations, induce a significant economic impact. Despite the increasing academic attention to the field, literature still fails to match the needs of and opportunities in the growing industrial practices. In particular, the literature can grow upon the ideas on sustainability, Industry 4.0 and collaboration, which shape future practices not only in logistics but also in many other industries. This review has the potential to enhance and accelerate the development of relevant literature that matches the challenges confronted in industrial problems. Furthermore, this review can help to explore the existing methods, algorithms and techniques employed to address this problem, reveal directions and generate inspiration for potential improvements.

Design/methodology/approach

This study provides a literature review on VAPs, focusing on quantitative models that incorporate any of the following emerging logistics trends: sustainability, Industry 4.0 and logistics collaboration.

Findings

In the literature, sustainability interactions have been limited to environmental externalities (mostly reducing operational-level emissions) and economic considerations; however, emissions generated throughout the supply chain, other environmental externalities such as waste and product deterioration, or the level of stakeholder engagement, etc., are to be monitored in order to achieve overall climate-neutral services to the society. Moreover, even though there are many types of collaboration (such as co-opetition and vertical collaboration) and Industry 4.0 opportunities (such as sharing information and comanaging distribution operations) that could improve vehicle allocation operations, these topics have not yet received sufficient attention from researchers.

Originality/value

The scientific contribution of this study is twofold: (1) This study analyses decision models of each reviewed article in terms of decision variable, constraint and assumption sets, objectives, modeling and solving approaches, the contribution of the article and the way that any of sustainability, Industry 4.0 and collaboration aspects are incorporated into the model. (2) The authors provide a discussion on the gaps in the related literature, particularly focusing on practical opportunities and serving climate-neutrality targets, carried out under four main streams: logistics collaboration possibilities, supply chain risks, smart solutions and various other potential practices. As a result, the review provides several gaps in the literature and/or potential research ideas that can improve the literature and may provide positive industrial impacts, particularly on how logistics collaboration may be further engaged, which supply chain risks are to be incorporated into decision models, and how smart solutions can be employed to cope with uncertainty and improve the effectiveness and efficiency of operations.

Details

The International Journal of Logistics Management, vol. 35 no. 3
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 30 April 2024

Myriam Quinones, Jaime Romero, Anne Schmitz and Ana M. Díaz-Martín

User acceptance is a necessary precondition to implementing self-driving buses as a solution to public transport challenges. Focusing on potential users in a real-life setting…

Abstract

Purpose

User acceptance is a necessary precondition to implementing self-driving buses as a solution to public transport challenges. Focusing on potential users in a real-life setting, this paper aims to analyze the factors that affect their willingness to use public autonomous shuttles (PASs) as well as their word-of-mouth (WOM) intentions.

Design/methodology/approach

Grounded on Unified Theory of Acceptance and Use of Technology (UTAUT2), the study was carried out on a sample of 318 potential users in a real-life setting. The hypothesized relationships were tested using partial least squares structural equation modeling (PLS-SEM).

Findings

The study reveals that performance expectancy, facilitating conditions, hedonic motivation and trust are significant predictors of PAS usage intention, which is, in turn, related to WOM communication. Additionally, the factors that impact the intention to use a PAS are found to exert an indirect effect on WOM, mediated by usage intention.

Practical implications

This study includes practical insights for transport decision-makers on PAS service design, marketing campaigns and WOM monitoring.

Originality/value

While extant research focuses on passengers who have tried autonomous shuttles in experimental settings, this article adopts the perspective of potential users who have no previous experience with these vehicles and identifies the link between usage intention and WOM communication in a real-life traffic environment.

研究目的

若要引入自動駕駛巴士來解決公共交通的問題和挑戰,一個必不可少的先決條件是得到用戶的認可。本研究透過重點分析活在真實生活環境中的潛在用戶,來探討影響他們使用公共自動交通工具的意願和口碑動機的各個因素。

研究的設計/方法

本研究以延伸整合型科技接受模式為基礎,對一個涵蓋處身於真實生活環境中318名潛在用戶的樣本進行分析和探討。研究人員以偏最小平方法的結構方程模型 (PLS-SEM), 去測試各個被假設的關聯。

研究結果

研究結果顯示,績效期望、有利條件、享樂動機和信任均明顯能夠預測人們使用公共自動交通工具的意願,而人們使用公共自動交通工具的意願又反過來與口碑溝通有所相關。另外,研究人員發現,影響人們使用公共自動交通工具意願的各個因素,對口碑會產生間接的影響,而使用意願是會起著調節作用的。

研究的原創性

現存的學術研究均聚焦分析那些曾於實驗設置下坐過自動交通工具的人士,而本研究卻採用從未坐過自動交通工具人士的角度來進行分析與探討,並且找出了於實際的交通環境裡、使用意願與口碑溝通之間的關聯。

實務方面的啟示

本研究提供的啟示,對有關公共自動交通工具服務設計、市場營銷活動和口碑監督工作的運輸決策者來說頗具實務意義。

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 13 February 2024

Yi Xia, Yonglong Li, Hongbin Zang, Yanpian Mao, Haoran Wang and Jialong Li

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the…

Abstract

Purpose

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the requirements of VBS for small AUVs are analyzed. Second, a modular VBS with high extensibility and easy integration is proposed based on the concepts of generality and interchangeability. Subsequently, a depth-switching controller is proposed based on the modular VBS, which combines the best features of the linear active disturbance rejection controller and the nonlinear active disturbance rejection controller.

Design/methodology/approach

The controller design and endurance of tiny AUVs are challenging because of their low environmental adaptation, limited energy resources and nonlinear dynamics. Traditional and single linear controllers cannot solve these problems efficiently. Although the VBS can improve the endurance of AUVs, the current VBS is not extensible for small AUVs in terms of the differences in individuals and operating environments.

Findings

The switching controller’s performance was examined using simulation with water flow and external disturbances, and the controller’s performance was compared in pool experiments. The results show that switching controllers have greater effectiveness, disturbance rejection capability and robustness even in the face of various disturbances.

Practical implications

A high degree of standardization and integration of VBS significantly enhances the performance of small AUVs. This will help expand the market for small AUV applications.

Originality/value

This solution improves the extensibility of the VBS, making it easier to integrate into different models of small AUVs. The device enhances the endurance and maneuverability of the small AUVs by adjusting buoyancy and center of gravity for low-power hovering and pitch angle control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 21 May 2024

Muhammad Shujaat Mubarik and Sharfuddin Ahmed Khan

Digital technologies (DTs) have emerged as a major driving force, transmuting the ways Supply Chains (SCs) are managed. The integration of DTs in supply chain management (SCM)…

Abstract

Digital technologies (DTs) have emerged as a major driving force, transmuting the ways Supply Chains (SCs) are managed. The integration of DTs in supply chain management (SCM), Digital Supply Chain Management (DSCM), has fundamentally reshaped the SCM landscape, offering new opportunities and challenges for organizations. This chapter provides a comprehensive overview of modern DTs and the way they impact modern SCM. This chapter has twofold objectives. First, it illustrates the major changes that DTs have brought to the supply chain landscape, unraveling their multifaceted implications. Second, it offers readers a deeper and comprehensive understanding of the challenges and opportunities arising from the incorporation of DTs into supply chains. By going through the chapter, readers will be able to have a comprehensive grasp of how DTs are reshaping SCM and how organizations can survive and thrive in the digital age. This chapter commences by shedding light on how DTs have and continue to redefine SCM, improving supply chain resilience, visibility, and sustainability in an increasingly complex and interconnected world. It also highlights the role of DTs in enhancing SC visibility, agility, and customer-centricity. Furthermore, this chapter briefly highlights the challenges related to the adoption (pre and post) of DTs in SCM, elucidating on issues related to talent acquisition, data security, and regulatory compliance. It also highlights the ethical and societal implications of this digital transformation, emphasizing the significance of responsible and sustainable practices. This chapter, with the help of three cases, illustrates how the adoption of DTs in SC can impact the various SC performance indicators.

Details

The Theory, Methods and Application of Managing Digital Supply Chains
Type: Book
ISBN: 978-1-80455-968-0

Keywords

Article
Publication date: 18 September 2023

Mingyu Wu, Che Fai Yeong, Eileen Lee Ming Su, William Holderbaum and Chenguang Yang

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption…

Abstract

Purpose

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption models, energy-efficient locomotion, hardware energy consumption, optimization in path planning and scheduling methods, and to suggest future research directions.

Design/methodology/approach

The systematic literature review (SLR) identified 244 papers for analysis. Research articles published from 2010 onwards were searched in databases including Google Scholar, ScienceDirect and Scopus using keywords and search criteria related to energy and power management in various robotic systems.

Findings

The review highlights the following key findings: batteries are the primary energy source for AMRs, with advances in battery management systems enhancing efficiency; hybrid models offer superior accuracy and robustness; locomotion contributes over 50% of a mobile robot’s total energy consumption, emphasizing the need for optimized control methods; factors such as the center of mass impact AMR energy consumption; path planning algorithms and scheduling methods are essential for energy optimization, with algorithm choice depending on specific requirements and constraints.

Research limitations/implications

The review concentrates on wheeled robots, excluding walking ones. Future work should improve consumption models, explore optimization methods, examine artificial intelligence/machine learning roles and assess energy efficiency trade-offs.

Originality/value

This paper provides a comprehensive analysis of energy efficiency in AMRs, highlighting the key findings from the SLR and suggests future research directions for further advancements in this field.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 627