Search results

1 – 10 of 80
Article
Publication date: 8 May 2024

Minghao Wang, Ming Cong, Yu Du, Huageng Zhong and Dong Liu

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no…

Abstract

Purpose

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no longer satisfied with enabling robots to build maps by remote control, more needs will focus on the autonomous exploration of unknown areas, which refer to the low light, complex spatial features and a series of unstructured environment, lick underground special space (dark and multiintersection). This study aims to propose a novel robot structure with mapping and autonomous exploration algorithms. The experiment proves the detection ability of the robot.

Design/methodology/approach

A small bio-inspired mobile robot suitable for underground special space (dark and multiintersection) is designed, and the control system is set up based on STM32 and Jetson Nano. The robot is equipped with double laser sensor and Ackerman chassis structure, which can adapt to the practical requirements of exploration in underground special space. Based on the graph optimization SLAM method, an optimization method for map construction is proposed. The Iterative Closest Point (ICP) algorithm is used to match two frames of laser to recalculate the relative pose of the robot, which improves the sensor utilization rate of the robot in underground space and also increase the synchronous positioning accuracy. Moreover, based on boundary cells and rapidly-exploring random tree (RRT) algorithm, a new Bio-RRT method for robot autonomous exploration is proposed in addition.

Findings

According to the experimental results, it can be seen that the upgraded SLAM method proposed in this paper achieves better results in map construction. At the same time, the algorithm presents good real-time performance as well as high accuracy and strong maintainability, particularly it can update the map continuously with the passing of time and ensure the positioning accuracy in the process of map updating. The Bio-RRT method fused with the firing excitation mechanism of boundary cells has a more purposeful random tree growth. The number of random tree expansion nodes is less, and the amount of information to be processed is reduced, which leads to the path planning time shorter and the efficiency higher. In addition, the target bias makes the random tree grow directly toward the target point with a certain probability, and the obtained path nodes are basically distributed on or on both sides of the line between the initial point and the target point, which makes the path length shorter and reduces the moving cost of the mobile robot. The final experimental results demonstrate that the proposed upgraded SLAM and Bio-RRT methods can better complete the underground special space exploration task.

Originality/value

Based on the background of robot autonomous exploration in underground special space, a new bio-inspired mobile robot structure with mapping and autonomous exploration algorithm is proposed in this paper. The robot structure is constructed, and the perceptual unit, control unit, driving unit and communication unit are described in detail. The robot can satisfy the practical requirements of exploring the underground dark and multiintersection space. Then, the upgraded graph optimization laser SLAM algorithm and interframe matching optimization method are proposed in this paper. The Bio-RRT independent exploration method is finally proposed, which takes shorter time in equally open space and the search strategy for multiintersection space is more efficient. The experimental results demonstrate that the proposed upgrade SLAM and Bio-RRT methods can better complete the underground space exploration task.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 7 May 2024

Atef Gharbi

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional…

Abstract

Purpose

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous exploration from both the starting and target nodes and improves the efficiency and effectiveness of the algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid convergence towards an optimal action strategy compared to existing methods.

Design/methodology/approach

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Findings

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm.

Research limitations/implications

The rigorous evaluation of our proposed BAEA* algorithm with the BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Originality/value

The originality of this paper lies in the introduction of the bidirectional adaptive enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a unique bidirectional search strategy, allowing to explore the same path from both the initial node and the target node. This approach significantly improves efficiency by quickly converging to the best paths and using A* heuristic knowledge. In particular, the algorithm shows remarkable capabilities to quickly recognize shorter and more stable paths while ensuring higher success rates, which is an important feature for time-sensitive applications. In addition, BAEA* shows adaptability and robustness in dynamically changing environments, not only avoiding obstacles but also respecting various constraints, ensuring safe path selection. Its scale further increases its versatility by seamlessly applying it to extensive and complex environments, making it a versatile solution for a wide range of practical applications. The rigorous assessment against established algorithms such as BAA* consistently shows the superior performance of BAEA* in planning shorter paths, achieving higher success rates in different environments and cementing its importance in complex and challenging environments. This originality marks BAEA* as a pioneering contribution, increasing the efficiency, adaptability and applicability of mobile robot path planning methods.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 1 September 2023

Abhay Kumar Grover and Muhammad Hasan Ashraf

Despite its potential, warehouse managers still struggle to successfully assimilate autonomous mobile robots (AMRs) in their operations. This paper means to identify the…

574

Abstract

Purpose

Despite its potential, warehouse managers still struggle to successfully assimilate autonomous mobile robots (AMRs) in their operations. This paper means to identify the moderating factors of AMR assimilation for production warehouses that influence the digital transformation of their intralogistics via AMRs.

Design/methodology/approach

Drawing on innovation of assimilation theory (IAT), this study followed an explorative approach using the principles of the case study method in business research. The cases comprised of four AMR end users and six AMR service providers. Data were collected through semi-structured interviews.

Findings

Four clusters of moderators that affect each stage of AMR assimilation were identified. These clusters include organizational attributes of end users (i.e. production warehouses), service attributes of service providers, technology attributes of AMRs and relational attributes between the AMR service providers and the AMR end users.

Originality/value

The authors extend the IAT framework by identifying various moderating factors between different stages of the AMR assimilation process. To the authors' knowledge, this is the first study to introduce the perspective of AMR end users in conjunction with AMR service providers to the “Industry 4.0” technology assimilation literature. The study propositions regarding these factors guide future intralogistics and AMR research.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 10 April 2024

Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…

Abstract

Purpose

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.

Design/methodology/approach

This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.

Findings

Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.

Originality/value

Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 May 2023

Yiming Li, Hongzhuan Chen, Shuo Cheng and Abdul Waheed Siyal

In order to analyze the level of independent controllability and its evolution of high-end equipment manufacturing industry from Jiangsu Province, this article introduces the…

Abstract

Purpose

In order to analyze the level of independent controllability and its evolution of high-end equipment manufacturing industry from Jiangsu Province, this article introduces the dual-excitation control line method to construct a comprehensive evaluation model for independent controllability.

Design/methodology/approach

Through the collection of information of high-end equipment manufacturing industry's independent and controllable capabilities on different indicators, the three aspects of advancement, autonomy and controllability, an empirical evaluation of 10 enterprises in the high-end equipment cluster in Jiangsu Province was conducted in terms of advancement, autonomy and controllability.

Findings

It effectively reveals the area and evolution characteristics of the “reward” and “punishment” of different indicators of each representative enterprise and reflects the development status and different characteristics of each representative enterprise on the three indicators. The research results provide decision-making guidance for enterprises in the management and control of advanced manufacturing systems with independent and controllable capabilities.

Originality/value

Existing research focuses on the evaluation of enterprises' independent controllability only on a single angle or index. This paper maps the dynamic evaluation problem of multiple time-point data to the evaluation problem of single time-point multi-index data and investigates the fluctuation of the performance of the same enterprise under different indexes, so as to comprehensively evaluate the independent controllable level of high-end equipment manufacturing industry and analyze the reasons. Further, this paper first establishes an evaluation index system of independent controllable level of high-end equipment manufacturing industry and quantitatively measures the advanced, independent, controllable and other aspects of typical enterprises in this industry by constructing a double incentive control line evaluation model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 29 September 2023

Asmae El Jaouhari, Jabir Arif, Ashutosh Samadhiya, Anil Kumar and Jose Arturo Garza-Reyes

Over the next decade, humanity is going to face big environmental problems, and considering these serious issues, businesses are adopting environmentally responsible practices. To…

Abstract

Purpose

Over the next decade, humanity is going to face big environmental problems, and considering these serious issues, businesses are adopting environmentally responsible practices. To put forward specific measures to achieve a more prosperous environmental future, this study aims to develop an environment-based perspective framework by integrating the Internet of Things (IoT) technology into a sustainable automotive supply chain (SASC).

Design/methodology/approach

The study presents a conceptual environmental framework – based on 29 factors constituting four stakeholders' rectifications – that holistically assess the SASC operations as part of the ReSOLVE model utilizing IoT. Then, experts from the SASC, IoT and sustainability areas participated in two rigorous rounds of a Delphi study to validate the framework.

Findings

The results indicate that the conceptual environmental framework proposed would help companies enhance the connectivity between major IoT tools in SASC, which would help develop congruent strategies for inducing sustainable growth.

Originality/value

This study adds value to existing knowledge on SASC sustainability and digitalization in the context where the SASC is under enormous pressure, competitiveness and increased variability.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 6 May 2024

Yue (Darcy) Lu, Yifeng Liang and Yao-Chin Wang

This study aims to conceptualize the characteristics of artificial intelligence (AI) dogs while exploring their applications in tourism and hospitality settings.

Abstract

Purpose

This study aims to conceptualize the characteristics of artificial intelligence (AI) dogs while exploring their applications in tourism and hospitality settings.

Design/methodology/approach

The total of 30 in-depth interviews were conducted, and data were analyzed through thematic analysis.

Findings

This study proposed differences between AI dogs and real dogs and human-like robots, core characteristics of AI dogs’ functions, a matrix of appearance and expectation regarding intelligence for AI dogs and human-like robots, the relationship between ethical barriers and task complexity, adoptions of AI dogs in different user segments and practical applications in hospitality and tourism settings, such as restaurants, city tour guides, extended-stay resorts and event organizations.

Research limitations/implications

This research advances the field of tourism and hospitality studies by introducing the new concept of AI dogs and their practical applications. This present study adds new insights into the opportunities and contexts of human–robot interaction in the field of tourism and hospitality.

Originality/value

To the best of the authors’ knowledge, this research is one of the first studies of AI dogs in tourism and hospitality.

Details

Journal of Hospitality and Tourism Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9880

Keywords

Article
Publication date: 24 May 2023

Pinar Kocabey Ciftci and Zeynep Didem Unutmaz Durmusoglu

This article proposes a novel hybrid simulation model for understanding the complex tobacco use behavior.

Abstract

Purpose

This article proposes a novel hybrid simulation model for understanding the complex tobacco use behavior.

Design/methodology/approach

The model is developed by embedding the concept of the multistage learning-based fuzzy cognitive map (FCM) into the agent-based model (ABM) in order to benefit from advantageous of each methodology. The ABM is used to represent individual level behaviors while the FCM is used as a decision support mechanism for individuals. In this study, socio-demographic characteristics of individuals, tobacco control policies, and social network effect are taken into account to reflect the current tobacco use system of Turkey. The effects of plain package and COVID-19 on tobacco use behaviors of individuals are also searched under different scenarios.

Findings

The findings indicate that the proposed model provides promising results for representing the mental models of agents. Besides, the scenario analyses help to observe the possible reactions of people to new conditions according to characteristics.

Originality/value

The proposed method combined ABM and FCM with a multi-stage learning phases for modeling a complex and dynamic social problem as close as real life. It is expected to contribute for both ABM and tobacco use literature.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 26 January 2023

Alba Yela Aránega, Rafael Castaño Sánchez and Samuel Ribeiro-Navarrete

The purpose of this study is to increase the resilience capacity of residential health-care professionals to achieve intrapreneurial development in workers. Through training based…

Abstract

Purpose

The purpose of this study is to increase the resilience capacity of residential health-care professionals to achieve intrapreneurial development in workers. Through training based on the development of emotional competencies and the application of mindfulness techniques, the aim is for the individual to become aware of his or her role, learn to manage emotions and reduce feelings of distress and anxiety.

Design/methodology/approach

The proposed programme has a duration of eight weeks. Every four days of training, mindfulness sessions are integrated, and at the beginning and end of the working day, 10 min are spent with superiors to give feedback on what happened during the day and the setting of new objectives. A control group is also established where they do not undergo such training. After the delivery of the programme, the results obtained after the application of the methodology to a sample of 91 residential health-care professionals are presented. By means of a validated resilience questionnaire composed of 25 items, the aim is to measure the resilience capacity of the participants before and after training and to observe the impact of the programme.

Findings

The results of this study show that the training has led to an improvement in the overall resilience capacity by 3.93% and has been able to reduce the existing gap between those over 45 years of age and younger people, although the age-related variable still represents a significant difference.

Originality/value

This study provides an innovative way of fostering entrepreneurship. While participants work on resilience management through mindfulness techniques, organisational commitment is achieved.

Details

Journal of Enterprising Communities: People and Places in the Global Economy, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6204

Keywords

1 – 10 of 80