Search results

1 – 10 of 66
Content available
Article
Publication date: 1 December 2005

206

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 April 2002

192

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 14 October 2021

Anton Wiberg, Johan Persson and Johan Ölvander

The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection…

2073

Abstract

Purpose

The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection, into a common optimisation framework.

Design/methodology/approach

A design methodology is formulated and tested in a case study. The outcome of the case study is analysed by comparing the obtained results with alternative designs achieved by using other design methods. The design process in the case study and the potential of the method to be used in different settings are also discussed. Finally, the work is concluded by stating the main contribution of the paper and highlighting where further research is needed.

Findings

The proposed method is implemented in a novel framework which is applied to a physical component in the case study. The component is a structural aircraft part that was designed to minimise weight while respecting several static and fatigue structural load cases. An addition goal is to minimise the manufacturing cost. Designs optimised for manufacturing by two different AM machines (EOS M400 and Arcam Q20+), with and without post-processing (centrifugal finishing) are considered. The designs achieved in this study show a significant reduction in both weight and cost compared to one AM manufactured geometry designed using more conventional methods and one design milled in aluminium.

Originality/value

The method in this paper allows for the holistic design and optimisation of components while considering manufacturability, cost and component functionality. Within the same framework, designs optimised for different setups of AM machines and post-processing can be automatically evaluated without any additional manual work.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 10 July 2024

Felix Endress, Julius Tiesler and Markus Zimmermann

Metal laser-powder-bed-fusion using laser-beam parts are particularly susceptible to contamination due to particles attached to the surface. This may compromise so-called…

237

Abstract

Purpose

Metal laser-powder-bed-fusion using laser-beam parts are particularly susceptible to contamination due to particles attached to the surface. This may compromise so-called technical cleanliness (e.g. in NASA RPTSTD-8070, ASTM G93, ISO 14952 or ISO 16232), which is important for many 3D-printed components, such as implants or liquid rocket engines. The purpose of the presented comparative study is to show how cleanliness is improved by design and different surface treatment methods.

Design/methodology/approach

Convex and concave test parts were designed, built and surface-treated by combinations of media blasting, electroless nickel plating and electrochemical polishing. After cleaning and analysing the technical cleanliness according to ASTM and ISO standards, effects on particle contamination, appearance, mass and dimensional accuracy are presented.

Findings

Contamination reduction factors are introduced for different particle sizes and surface treatment methods. Surface treatments were more effective for concave design features, however, the initial and resulting absolute particle contamination was higher. Results further indicate that there are trade-offs between cleanliness and other objectives in design. Design guidelines are introduced to solve conflicts in design when requirements for cleanliness exist.

Originality/value

This paper recommends designing parts and corresponding process chains for manufacturing simultaneously. Incorporating post-processing characteristics into the design phase is both feasible and essential. In the experimental study, electroless nickel plating in combination with prior glass bead blasting resulted in the lowest total remaining particle contamination. This process applied for cleanliness is a novelty, as well as a comparison between the different surface treatment methods.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 17 July 2019

Doris Entner, Thorsten Prante, Thomas Vosgien, Alexandru-Ciprian Zăvoianu, Susanne Saminger-Platz, Martin Schwarz and Klara Fink

The paper aims to raise awareness in the industry of design automation tools, especially in early design phases, by demonstrating along a case study the seamless integration of a…

1767

Abstract

Purpose

The paper aims to raise awareness in the industry of design automation tools, especially in early design phases, by demonstrating along a case study the seamless integration of a prototypically implemented optimization, supporting design space exploration in the early design phase and an in operational use product configurator, supporting the drafting and detailing of the solution predominantly in the later design phase.

Design/methodology/approach

Based on the comparison of modeled as-is and to-be processes of ascent assembly designs with and without design automation tools, an automation roadmap is developed. Using qualitative and quantitative assessments, the potentials and benefits, as well as acceptance and usage aspects, are evaluated.

Findings

Engineers tend to consider design automation for routine tasks. Yet, prototypical implementations support the communication and identification of the potential for the early stages of the design process to explore solution spaces. In this context, choosing from and interactively working with automatically generated alternative solutions emerged as a particular focus. Translators, enabling automatic downstream propagation of changes and thus ensuring consistency as to change management were also evaluated to be of major value.

Research limitations/implications

A systematic validation of design automation in design practice is presented. For generalization, more case studies are needed. Further, the derivation of appropriate metrics needs to be investigated to normalize validation of design automation in future research.

Practical implications

Integration of design automation in early design phases has great potential for reducing costs in the market launch. Prototypical implementations are an important ingredient for potential evaluation of actual usage and acceptance before implementing a live system.

Originality/value

There is a lack of systematic validation of design automation tools supporting early design phases. In this context, this work contributes a systematically validated industrial case study. Early design-phases-support technology transfer is important because of high leverage potential.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 28 September 2023

Jonas Bundschuh, M. Greta Ruppert and Yvonne Späck-Leigsnering

The purpose of this paper is to present the freely available finite element simulation software Pyrit.

1084

Abstract

Purpose

The purpose of this paper is to present the freely available finite element simulation software Pyrit.

Design/methodology/approach

In a first step, the design principles and the objective of the software project are defined. Then, the software’s structure is established: The software is organized in packages for which an overview is given. The structure is based on the typical steps of a simulation workflow, i.e., problem definition, problem-solving and post-processing. State-of-the-art software engineering principles are applied to ensure a high code quality at all times. Finally, the modeling and simulation workflow of Pyrit is demonstrated by three examples.

Findings

Pyrit is a field simulation software based on the finite element method written in Python to solve coupled systems of partial differential equations. It is designed as a modular software that is easily modifiable and extendable. The framework can, therefore, be adapted to various activities, i.e., research, education and industry collaboration.

Research limitations/implications

The focus of Pyrit are static and quasistatic electromagnetic problems as well as (coupled) heat conduction problems. It allows for both time domain and frequency domain simulations.

Originality/value

In research, problem-specific modifications and direct access to the source code of simulation tools are essential. With Pyrit, the authors present a computationally efficient and platform-independent simulation software for various electromagnetic and thermal field problems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 17 June 2021

Susanne Zimmermann-Janschitz, Simon Landauer, Sebastian Drexel and Jana Obermeier

The study aims to promote independent mobility for persons with visual impairment or legal blindness (VIB) by developing a Web-based wayfinding application using geographic…

1004

Abstract

Purpose

The study aims to promote independent mobility for persons with visual impairment or legal blindness (VIB) by developing a Web-based wayfinding application using geographic information systems (GIS). While the literature mainly focuses on technical devices presenting results for wayfinding, a lack of integration of user needs is identified. The inclusive, participative developed application offers step-by-step directions for pre-trip planning through an accessible user interface.

Design/methodology/approach

The paper presents a semi-automated approach to extract a pedestrian routing network data set based on open government data and field survey. User profiles calculate different routes using a weighting scheme for landmarks, orientation hints, infrastructure of crossings and sidewalks. The adoption of ArcGIS Web AppBuilder widgets allows access of the user interface additionally through keyboard-only navigation and therefore screen-reader capability.

Findings

GIS offers a powerful tool to design network analysis for persons with VIB. The routing algorithm accesses different user profiles, returning individualized turn-by-turn directions. The complex set of attributes, including shorelines, landmarks and barriers, can be integrated by semi-automated processes.

Practical implications

The paper illustrates the benefit of GIS applications for wayfinding of persons with VIB to raise self-determination and independence.

Originality/value

A ubiquitous pedestrian sidewalk network for a medium-size city comprises a novelty, as research has mainly focused on small areas. The integration of shorelines next to a various number of hints, landmarks and potential barriers through semi-automated processes allows reproducibility and transferability of the model to other cities.

Details

Journal of Enabling Technologies, vol. 15 no. 3
Type: Research Article
ISSN: 2398-6263

Keywords

Open Access
Article
Publication date: 31 July 2023

Sara Lafia, David A. Bleckley and J. Trent Alexander

Many libraries and archives maintain collections of research documents, such as administrative records, with paper-based formats that limit the documents' access to in-person use…

Abstract

Purpose

Many libraries and archives maintain collections of research documents, such as administrative records, with paper-based formats that limit the documents' access to in-person use. Digitization transforms paper-based collections into more accessible and analyzable formats. As collections are digitized, there is an opportunity to incorporate deep learning techniques, such as Document Image Analysis (DIA), into workflows to increase the usability of information extracted from archival documents. This paper describes the authors' approach using digital scanning, optical character recognition (OCR) and deep learning to create a digital archive of administrative records related to the mortgage guarantee program of the Servicemen's Readjustment Act of 1944, also known as the G.I. Bill.

Design/methodology/approach

The authors used a collection of 25,744 semi-structured paper-based records from the administration of G.I. Bill Mortgages from 1946 to 1954 to develop a digitization and processing workflow. These records include the name and city of the mortgagor, the amount of the mortgage, the location of the Reconstruction Finance Corporation agent, one or more identification numbers and the name and location of the bank handling the loan. The authors extracted structured information from these scanned historical records in order to create a tabular data file and link them to other authoritative individual-level data sources.

Findings

The authors compared the flexible character accuracy of five OCR methods. The authors then compared the character error rate (CER) of three text extraction approaches (regular expressions, DIA and named entity recognition (NER)). The authors were able to obtain the highest quality structured text output using DIA with the Layout Parser toolkit by post-processing with regular expressions. Through this project, the authors demonstrate how DIA can improve the digitization of administrative records to automatically produce a structured data resource for researchers and the public.

Originality/value

The authors' workflow is readily transferable to other archival digitization projects. Through the use of digital scanning, OCR and DIA processes, the authors created the first digital microdata file of administrative records related to the G.I. Bill mortgage guarantee program available to researchers and the general public. These records offer research insights into the lives of veterans who benefited from loans, the impacts on the communities built by the loans and the institutions that implemented them.

Details

Journal of Documentation, vol. 79 no. 7
Type: Research Article
ISSN: 0022-0418

Keywords

Open Access
Article
Publication date: 14 January 2020

Antonio Armillotta

This paper aims to investigate the feasibility of adding macro-textures to triangle meshes for additive manufacturing (AM) focusing on possible time and quality issues in both…

Abstract

Purpose

This paper aims to investigate the feasibility of adding macro-textures to triangle meshes for additive manufacturing (AM) focusing on possible time and quality issues in both software processing and part fabrication.

Design/methodology/approach

A demonstrative software tool was developed to apply user-selected textures to existing meshes. The computational procedure is a three-dimensional extension of the solid texturing method used in computer graphics. The tool was tested for speed and quality of results, considering also the pre- and post-processing operations required. Some textured meshes were printed by different processes to test build speed and quality.

Findings

The tool can handle models with realistic complexity in acceptable computation times. Parts are built without difficulties or extra-costs achieving a good aesthetic yield of the texture.

Research limitations/implications

The tool cannot reproduce sample patterns but requires the development of a generation algorithm for different type of textures. Mesh processing operations may take a long time when very fine textures are added to large parts.

Practical implications

Direct texturing can help obtain parts with aesthetic or functional textures without the need for surface post-treatments, which can be especially difficult and expensive for plastic parts.

Originality/value

The proposed method improves the uniformity and consistency of textures compared to existing approaches, and can support future systematic studies on the detail resolution of AM processes.

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 66