Search results

1 – 10 of 52
Open Access
Article
Publication date: 12 January 2024

Patrik Jonsson, Johan Öhlin, Hafez Shurrab, Johan Bystedt, Azam Sheikh Muhammad and Vilhelm Verendel

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

1551

Abstract

Purpose

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Design/methodology/approach

A mixed-method case approach is applied. Explanatory variables are identified from the literature and explored in a qualitative analysis at an automotive original equipment manufacturer. Using logistic regression and random forest classification models, quantitative data (historical schedule transactions and internal data) enables the testing of the predictive difference of variables under various planning horizons and inaccuracy levels.

Findings

The effects on delivery schedule inaccuracies are contingent on a decoupling point, and a variable may have a combined amplifying (complexity generating) and stabilizing (complexity absorbing) moderating effect. Product complexity variables are significant regardless of the time horizon, and the item’s order life cycle is a significant variable with predictive differences that vary. Decoupling management is identified as a mechanism for generating complexity absorption capabilities contributing to delivery schedule accuracy.

Practical implications

The findings provide guidelines for exploring and finding patterns in specific variables to improve material delivery schedule inaccuracies and input into predictive forecasting models.

Originality/value

The findings contribute to explaining material delivery schedule variations, identifying potential root causes and moderators, empirically testing and validating effects and conceptualizing features that cause and moderate inaccuracies in relation to decoupling management and complexity theory literature?

Details

International Journal of Operations & Production Management, vol. 44 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 2 September 2024

Li Shaochen, Zhenyu Liu, Yu Huang, Daxin Liu, Guifang Duan and Jianrong Tan

Assembly action recognition plays an important role in assembly process monitoring and human-robot collaborative assembly. Previous works overlook the interaction relationship…

Abstract

Purpose

Assembly action recognition plays an important role in assembly process monitoring and human-robot collaborative assembly. Previous works overlook the interaction relationship between hands and operated objects and lack the modeling of subtle hand motions, which leads to a decline in accuracy for fine-grained action recognition. This paper aims to model the hand-object interactions and hand movements to realize high-accuracy assembly action recognition.

Design/methodology/approach

In this paper, a novel multi-stream hand-object interaction network (MHOINet) is proposed for assembly action recognition. To learn the hand-object interaction relationship in assembly sequence, an interaction modeling network (IMN) comprising both geometric and visual modeling is exploited in the interaction stream. The former captures the spatial location relation of hand and interacted parts/tools according to their detected bounding boxes, and the latter focuses on mining the visual context of hand and object at pixel level through a position attention model. To model the hand movements, a temporal enhancement module (TEM) with multiple convolution kernels is developed in the hand stream, which captures the temporal dependences of hand sequences in short and long ranges. Finally, assembly action prediction is accomplished by merging the outputs of different streams through a weighted score-level fusion. A robotic arm component assembly dataset is created to evaluate the effectiveness of the proposed method.

Findings

The method can achieve the recognition accuracy of 97.31% and 95.32% for coarse and fine assembly actions, which outperforms other comparative methods. Experiments on human-robot collaboration prove that our method can be applied to industrial production.

Originality/value

The author proposes a novel framework for assembly action recognition, which simultaneously leverages the features of hands, objects and hand-object interactions. The TEM enhances the representation of dynamics of hands and facilitates the recognition of assembly actions with various time spans. The IMN learns the semantic information from hand-object interactions, which is significant for distinguishing fine assembly actions.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 18 June 2024

Tianyu Zhang, Hongguang Wang, Peng LV, Xin’an Pan and Huiyang Yu

Collaborative robots (cobots) are widely used in various manipulation tasks within complex industrial environments. However, the manipulation capabilities of cobot manipulation…

Abstract

Purpose

Collaborative robots (cobots) are widely used in various manipulation tasks within complex industrial environments. However, the manipulation capabilities of cobot manipulation planning are reduced by task, environment and joint physical constraints, especially in terms of force performance. Existing motion planning methods need to be more effective in addressing these issues. To overcome these challenges, the authors propose a novel method named force manipulability-oriented manipulation planning (FMMP) for cobots.

Design/methodology/approach

This method integrates force manipulability into a bidirectional sampling algorithm, thus planning a series of paths with high force manipulability while satisfying constraints. In this paper, the authors use the geometric properties of the force manipulability ellipsoid (FME) to determine appropriate manipulation configurations. First, the authors match the principal axes of FME with the task constraints at the robot’s end effector to determine manipulation poses, ensuring enhanced force generation in the desired direction. Next, the authors use the volume of FME as the cost function for the sampling algorithm, increasing force manipulability and avoiding kinematic singularities.

Findings

Through experimental comparisons with existing algorithms, the authors validate the effectiveness and superiority of the proposed method. The results demonstrate that the FMMP significantly improves the force performance of cobots under task, environmental and joint physical constraints.

Originality/value

To improve the force performance of manipulation planning, the FMMP introduces the FME into sampling-based path planning and comprehensively considers task, environment and joint physical constraints. The proposed method performs satisfactorily in experiments, including assembly and in situ measurement.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 August 2024

Buddhini Ginigaddara, Mahmoud Ershadi, Marcus Jefferies and Srinath Perera

Recent research advocates that there are plenty of opportunities for key players in the offsite construction (OSC) sector to harness the full potential of advanced project…

Abstract

Purpose

Recent research advocates that there are plenty of opportunities for key players in the offsite construction (OSC) sector to harness the full potential of advanced project management techniques. While previous research mainly focuses on transformations related to digital and advanced technologies driven by industry 4.0 principles, a research gap still exists on the intersection of project management capabilities and OSC. This study attempts to bridge this gap by capturing the homogeneity of different capabilities and integrating them into an overarching framework.

Design/methodology/approach

A scientometric analysis is conducted to provide an overview of the co-occurrence network of keywords in the representative studies. A systematic literature review (SLR) of articles published between 2010 and 2022, followed by a subsequent full-text examination of 63 selected articles, revealed 34 interrelated capabilities to be categorised under three exhaustive planning-oriented, design-oriented and delivery-oriented groups.

Findings

This review revealed an upward trend of publication on project management capabilities for OSC with a specific interest in optimisation of resources allocated to offsite operations. The top five capabilities discussed more frequently in the literature include (1) artificial intelligence for design error detection, (2) enhanced resource productivity, (3) cost saving in offsite production, (4) real-time traceability of modules and (5) applying lean agile production principles to OSC, which imply the critical role of quality, cost saving, traceability and agility in OSC.

Originality/value

This study elicits core capabilities and develops a new offsite project management framework for the first time. The authors provide directions for researchers and practitioners to apply capabilities for obtaining better outcomes and higher value out of offsite operations.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 August 2024

Binghai Zhou and Mingda Wen

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the…

Abstract

Purpose

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the periphery of the line, proves insufficient for mixed-model assembly lines (MMAL). Consequently, this paper aims to introduce a material distribution scheduling problem considering the shared storage area (MDSPSSA). To address the inherent trade-off requirement of achieving both just-in-time efficiency and energy savings, a mathematical model is developed with the bi-objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

A nondominated and multipopulation multiobjective grasshopper optimization algorithm (NM-MOGOA) is proposed to address the medium-to-large-scale problem associated with MDSPSSA. This algorithm combines elements from the grasshopper optimization algorithm and the nondominated sorting genetic algorithm-II. The multipopulation and coevolutionary strategy, chaotic mapping and two further optimization operators are used to enhance the overall solution quality.

Findings

Finally, the algorithm performance is evaluated by comparing NM-MOGOA with multi-objective grey wolf optimizer, multiobjective equilibrium optimizer and multi-objective atomic orbital search. The experimental findings substantiate the efficacy of NM-MOGOA, demonstrating its promise as a robust solution when confronted with the challenges posed by the MDSPSSA in MMALs.

Originality/value

The material distribution system devised in this paper takes into account the establishment of shared material storage areas between adjacent workstations. It permits the undifferentiated storage of various part types in fixed BOL areas. Concurrently, the innovative NM-MOGOA algorithm serves as the core of the system, supporting the formulation of scheduling plans.

Article
Publication date: 12 June 2024

Ana Maria Kaiser Cardoso, Osiris Canciglieri Junior and Guilherme Brittes Benitez

This paper aims to deepen the understanding of the service design concept by critically analyzing the existing servitization literature. The paper’s main purpose is to structure…

Abstract

Purpose

This paper aims to deepen the understanding of the service design concept by critically analyzing the existing servitization literature. The paper’s main purpose is to structure service design and offer a clear understanding of how it should be applied.

Design/methodology/approach

A systematic literature review was conducted within servitization literature to understand the evolution of the service design concept. The authors use service design pillars (i.e. user-centered, co-creative, sequencing, evidencing and holistic) as a theoretical framework to explain how service design should be effectively incorporated into the servitization journey.

Findings

The findings expose a discordant interpretation of the pillars underpinning service design, revealing a paradoxical comprehension that jeopardizes its practical advancement within the servitization literature. The authors propose that service design should first be seen holistically, then target user-centered practices for sequencing service development steps, and finally, co-creating with partners to make the service evident to users. Furthermore, the authors contextualize service design within contemporary and traditional service-related issues such as servitization innovation, customer experience, service-dominant logic, service ecosystems and digital transformation.

Originality/value

This research pinpoints the service design concept’s shortcomings in the servitization literature. The study promotes a critical reflection on the service design concept and its current application, providing avenues for future research.

Details

Journal of Business & Industrial Marketing, vol. 39 no. 9
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 16 August 2024

Yahao Wang, Yanghong Li, Zhen Li, HaiYang He, Sheng Chen and Erbao Dong

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling…

44

Abstract

Purpose

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling Framework (TC-Framework) that enables the planner to adapt to different end-effector constraints.

Design/methodology/approach

This work presents a standard constraint methodology for representing end-effector constraints as a collection of constraint primitives. The constraint primitives are merged sequentially into the planner, and a unified constraint input interface and constraint module are added to the standard sampling-based planner framework. This approach enables the realization of a generic planner framework that avoids the need to build separate planners for different end-effector constraints.

Findings

Simulation tests have demonstrated that the planner based on TC-framework can adapt to various end-effector constraints. Physical experiments have also confirmed that the framework can be used in real robotic systems to perform autonomous operational tasks. The framework’s strong compatibility with constraints allows for generalization to other tasks without modifying the scheduler, significantly reducing the difficulty of robot deployment in task-diverse scenarios.

Originality/value

This paper proposes a unified constraint method based on constraint primitives to enhance the sampling-based planner. The planner can now adapt to different end effector constraints by opening up the input interface for constraints. A series of simulation tests were conducted to evaluate the TC-Framework-based planner, which demonstrated its ability to adapt to various end-effector constraints. Tests on a physical experimental system show that the framework allows the robot to perform various operational tasks without requiring modifications to the planner. This enhances the value of robots for applications in fields with diverse tasks.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 19 September 2024

Philipp Loacker, Siegfried Pöchtrager, Christian Fikar and Wolfgang Grenzfurtner

The purpose of this study is to present a methodical procedure on how to prepare event logs and analyse them through process mining, statistics and visualisations. The aim is to…

Abstract

Purpose

The purpose of this study is to present a methodical procedure on how to prepare event logs and analyse them through process mining, statistics and visualisations. The aim is to derive roots and patterns of quality deviations and non-conforming finished products as well as best practice facilitating employee training in the food processing industry. Thereby, a key focus is on recognising tacit knowledge hidden in event logs to improve quality processes.

Design/methodology/approach

This study applied process mining to detect root causes of quality deviations in operational process of food production. In addition, a data-ecosystem was developed which illustrates a continuous improvement feedback loop and serves as a role model for other applications in the food processing industry. The approach was applied to a real-case study in the processed cheese industry.

Findings

The findings revealed practical and conceptional contributions which can be used to continuously improve quality management (QM) in food processing. Thereby, the developed data-ecosystem supports production and QM in the decision-making processes. The findings of the analysis are a valuable basis to enhance operational processes, aiming to prevent quality deviations and non-conforming finished products.

Originality/value

Process mining is still rarely used in the food industry. Thereby, the proposed method helps to identify tacit knowledge in the food processing industry, which was shown by the framework for the preparation of event logs and the data ecosystem.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 31 July 2023

Anurag Tiwari and Priyabrata Mohapatra

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach…

Abstract

Purpose

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach to solve optimization problems. This study can help to select the optimum number of suppliers based on cost.

Design/methodology/approach

To model the raw material vehicle routing problem, a mixed integer linear programming (MILP) problem is formulated. An interesting phenomenon added to the proposed problem is that there is no compulsion to visit all suppliers. To guarantee the demand of semiconductor industry, all visited suppliers should reach a given raw material capacity requirement. To solve the proposed model, the authors developed a novel hybrid approach that is a combination of block and edge recombination approaches. To avoid bias, the authors compare the results of the proposed methodology with other known approaches, such as genetic algorithms (GAs) and ant colony optimisation (ACO).

Findings

The findings indicate that the proposed model can be useful in industries, where multiple suppliers are used. The proposed hybrid approach provides a better sequence of suppliers compared to other heuristic techniques.

Research limitations/implications

The data used in the proposed model is generated based on previous literature. The problem derives from the assumption that semiconductor industries use a variety of raw materials.

Practical implications

This study provides a new model and approach that can help practitioners and policymakers select suppliers based on their logistics costs.

Originality/value

This study provides two important contributions in the context of the supply chain. First, it provides a new variant of the vehicle routing problem in consideration of raw material collection; and second, it provides a new approach to solving optimisation problems.

Open Access
Article
Publication date: 29 April 2024

Giovanna Culot, Guido Orzes, Marco Sartor and Guido Nassimbeni

This study aims to analyze the factors that drive or prevent interorganizational data sharing in the context of digital transformation (DT). Data sharing appears as a precondition…

Abstract

Purpose

This study aims to analyze the factors that drive or prevent interorganizational data sharing in the context of digital transformation (DT). Data sharing appears as a precondition for companies to capture emerging opportunities in supply chain management and for product-related servitization; however, there are ongoing concerns, and data are often perceived as the “new oil.” It is thus important to gain a better understanding of the determinants of firms’ decisions.

Design/methodology/approach

The authors develop an embedded case study analysis involving 16 firms within an extended supply network in the automotive industry. The authors focus on the peculiarities of the new context, as opposed to elements highlighted by research prior to the advent of the latest technologies. Abductive reasoning is applied to the theoretical foundations of the resource-based view, resource dependence theory and the complex adaptive systems perspective.

Findings

Data sharing is largely underpinned by factors identified prior to DT, such as data specificity, dependence dynamics and protection mechanisms and the dynamism of the business context. DT, however, can influence the extent of data sharing. New factors concern complementarities whenever data are pooled from different sources and digital platforms, as well as different forms of data ownership protection.

Originality/value

This study stresses that data sharing in the context of DT can be explained through established theoretical lenses, providing the integration of elements accounting for new technological opportunities.

Details

Supply Chain Management: An International Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1359-8546

Keywords

1 – 10 of 52