Search results

1 – 10 of 141
Article
Publication date: 1 March 2013

Chang Jiang You, Xiao Wei Zhu and Zhen Hai Shao

The purpose of this paper is to propose an improved reconfigurable zero‐IF RF receiver with anti‐interference improvement used in dynamic spectrum resource sharing system at UHF…

Abstract

Purpose

The purpose of this paper is to propose an improved reconfigurable zero‐IF RF receiver with anti‐interference improvement used in dynamic spectrum resource sharing system at UHF band based on tunable filter array computation. Measured results show that the anti‐interference competence of improved zero‐IF RF receiver is enhanced greatly by employing two tunable filter arrays.

Design/methodology/approach

The anti‐interference reconfigurable zero‐IF RF receiver is based on fully differential I/Q demodulation structure and employs two same tunable filter arrays to meet the requirement on adjacent channel suppression imposed by systems coexisting. The performance requirement of each filter in tunable filter arrays is computed and derived according to the needs of anti‐interference.

Findings

The anti‐interference competence of zero‐IF RF receiver could be enhanced greatly by employing two tunable filter arrays.

Originality/value

The paper provides a method to design zero‐IF RF receivers with anti‐interference competence used in dynamic spectrum resource sharing systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 June 2023

Bingwei Gao, Wei Zhang, Lintao Zheng and Hongjian Zhao

The purpose of this paper is to design a third-order linear active disturbance rejection controller (LADRC) to improve the response characteristics and robustness of the…

Abstract

Purpose

The purpose of this paper is to design a third-order linear active disturbance rejection controller (LADRC) to improve the response characteristics and robustness of the electrohydraulic servo system.

Design/methodology/approach

The LADRC was designed by replacing the nonlinear functions in each part of ADRC with linear functions or linear combinations, and the parameters of each part of the LADRC were connected with their bandwidth through the pole configuration method to reduce the required tuning parameters, and used an improved grey wolf optimizer to tune the LADRC parameters.

Findings

The anti-interference control simulation and experiment on the LADRC, ADRC and proportion integration differentiation (PID) were carried out to test the robustness, anti-interference ability and superiority of the designed LADRC. The simulation and experiment results showed that the LADRC control and anti-interference control had excellent performance, and because of its simple structure and fewer parameters, LADRC was easier to implement and had a better control effect and anti-interference.

Originality/value

For the problems of parameter perturbation, unknown interference and inaccurate model in the electrohydraulic position servo system, the designed third-order LADRC has good tracking accuracy and anti-interference, has few parameters and is conducive to promotion.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 6 December 2022

Xinhong Zou, Hongchang Ding and Jinhong Li

This paper aims to present a sliding mode control method based on disturbance observer (DO) for improving the reaching law of permanent magnet synchronous motor (PMSM).

Abstract

Purpose

This paper aims to present a sliding mode control method based on disturbance observer (DO) for improving the reaching law of permanent magnet synchronous motor (PMSM).

Design/methodology/approach

Aiming at the insufficiency of the traditional exponential reaching law used in sliding mode variable structure control, an exponential reaching law related to the speed error is proposed. The improved exponential reaching law can adaptively adjust the size of the constant velocity term in the reaching law according to the size of the speed error, so as to adaptively adjust the speed of the system approaching the sliding mode surface to overcome the control deviation and improve the dynamic and steady state performance. To improve the anti-interference ability of the system, a DO is proposed to observe the external disturbance of the system, and the observed value is used to compensate the system. The stability of the system is analyzed by Lyapunov theorem. The effectiveness of this method is proved by simulation and experiment.

Findings

Simulation and experiment show that the proposed method has the advantages of fast response and strong anti-interference ability.

Research limitations/implications

The proposed method cannot observe the disturbance caused by the change of internal parameters of the system.

Originality/value

A sliding mode control method for PMSM is proposed, which has good control performance. The proposed method can effectively suppress chattering, ensure fast response speed and have strong anti-interference ability. The effectiveness of the algorithm is verified by simulation and experiment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 November 2021

Jiajie Wu, Zebin Yang, Xiaodong Sun and Ding Wang

The purpose of the control method proposed in this paper is to address the problem of the poor anti-interference of the suspension winding current in the traditional bearingless…

Abstract

Purpose

The purpose of the control method proposed in this paper is to address the problem of the poor anti-interference of the suspension winding current in the traditional bearingless induction motor (BL-IM) direct suspension force control process.

Design/methodology/approach

A model predictive direct suspension force control of a BL-IM based on sliding mode observer is proposed in this paper. The model predictive control (MPC) is introduced to the traditional direct suspension force control to improve the anti-interference of the suspension current. A sliding mode flux linkage observer is designed and applied to the MPC system, which reduces the error of the parameter observation and improves the robustness of the system. The strategy is designed and implemented in the MATLAB/Simulink and the two-level AC speed regulation platform.

Findings

The simulation and experimental results show that the performance of the BL-IM under the control method proposed in this paper is better than that under the traditional direct suspension force control, and the suspension performance of the motor and the anti-interference of the control system are improved.

Originality/value

This study helps to improve the suspension performance of the motor and the anti-interference of the control system.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 November 2021

Manlu Liu, Rui Lin, Maotao Yang, Anaid V. Nazarova and Jianwen Huo

The characteristics of spherical robots, such as under-drive, non-holonomic constraints and strong coupling, make it difficult to establish its motion control model accurately. To…

Abstract

Purpose

The characteristics of spherical robots, such as under-drive, non-holonomic constraints and strong coupling, make it difficult to establish its motion control model accurately. To improve the anti-interference performance of spherical robots in practical engineering, this paper proposes a spherical robot motion controller based on auto-disturbance rejection control (ADRC) with parameter tuning.

Design/methodology/approach

This paper considers the influences of the spherical shell, internal frame and pendulum on the movement of the spherical robot during the rotation to establish the multi-body dynamics model of the XK-I spherical robot. Due to the serious coupling problem of the dynamic model, the motion control state equation is constructed using linearization and decoupling. The XK-I spherical robot PSO-ADRC motion controller with parameter tuning function is designed by combining the state equation with the particle swarm optimization (PSO) algorithm. Finally, experiments are performed to evaluate the feasibility of PSO-ADRC in an actual case compared to ADRC, PSO-PID and PID.

Findings

By analyzing the required time to reach the expected value, the control stability and the fluctuation range of the standard deviation after reaching the expected value, the superiority of PSO-ADRC to ADRC, PSO-PID and PID is demonstrated in terms of the speed and anti-interference ability.

Practical implications

The proposed method can be applied to the robot control field.

Originality/value

A parameter-tuning method for auto-disturbance-rejection motion control of the spherical robot is proposed. According to the experimental results, the anti-interference ability of the spherical robot moving on uneven ground is improved. Therefore, it provides a foundation for the autonomous environmental monitoring of the spherical robot equipped with sensors.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 May 2022

Bingwei Gao, Wei Shen, Ye Dai and Yong Tai Ye

This paper aims to study a parameter tuning method for the active disturbance rejection control (ADRC) to improve the anti-interference ability and position tracking of the…

1480

Abstract

Purpose

This paper aims to study a parameter tuning method for the active disturbance rejection control (ADRC) to improve the anti-interference ability and position tracking of the performance of the servo system, and to ensure the stability and accuracy of practical applications.

Design/methodology/approach

This study proposes a parameter self-tuning method for ADRC based on an improved glowworm swarm optimization algorithm. The algorithm is improved by using sine and cosine local optimization operators and an adaptive mutation strategy. The improved algorithm is then used for parameter tuning of the ADRC to improve the anti-interference ability of the control system and ensure the accuracy of the controller parameters.

Findings

The authors designed an optimization model based on MATLAB, selected examples of simulation and experimental research and compared it with the standard glowworm swarm optimization algorithm, particle swarm algorithm and artificial bee colony algorithm. The results show that the response time of using the improved glowworm swarm optimization algorithm to optimize the auto-disturbance rejection control is short; there is no overshoot; the tracking process is relatively stable; the anti-interference ability is strong; and the optimization effect is better.

Originality/value

The innovation of this study is to improve the glowworm swarm optimization algorithm, propose a sine and cosine, local optimization operator, expand the firefly search space and introduce a new adaptive mutation strategy to adaptively adjust the mutation probability based on the fitness value, improve the global search ability of the algorithm and use the improved algorithm to adjust the parameters of the active disturbance rejection controller.

Article
Publication date: 13 May 2020

Dong Mei and Zhu-Qing Yu

This paper aims to improve the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous disturbance under complex air…

Abstract

Purpose

This paper aims to improve the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous disturbance under complex air conditions to ensure the clarity and stability of airborne radar imaging.

Design/methodology/approach

This paper proposes a new active disturbance rejection control (ADRC) strategy based on the cascade extended state observer (ESO) for airborne radar stabilization platform, which adopts two first-order ESOs to estimate the angular velocity value and the angular position value of the stabilized platform. Then makes the error signal which subtracts the estimated value of ESO from the output signal of the tracking-differentiator as the input signal of the nonlinear state error feedback (NLSEF), and according to the output signal of the NLSEF and the value which dynamically compensated the total disturbances estimated by the two ESO to produce the final control signal.

Findings

The simulation results show that, compared with the classical ADRC, the ADRC based on the cascade ESO not only estimates the unknown disturbance more accurately but also improves the delay of disturbance observation effectively due to the increase of the order of the observer. In addition, compared with the classical PID control and the classical ADRC, it has made great progress in response performance and anti-interference ability, especially in the complex air conditions.

Originality/value

The originality of the paper is the adoption of a new ADRC control strategy based on the cascade ESO to ameliorate the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous interference under complex air conditions.

Article
Publication date: 23 October 2023

Yerui Fan, Yaxiong Wu and Jianbo Yuan

This study aims to improve the muscle model control performance of a tendon-driven musculoskeletal system (TDMS) to overcome disadvantages such as multisegmentation and strong…

Abstract

Purpose

This study aims to improve the muscle model control performance of a tendon-driven musculoskeletal system (TDMS) to overcome disadvantages such as multisegmentation and strong coupling. An adaptive network controller (ANC) with a disturbance observer is established to reduce the modeling error of the musculoskeletal model and improve its antidisturbance ability.

Design/methodology/approach

In contrast to other control technologies adopted for musculoskeletal humanoids, which use geometric relationships and antagonist inhibition control, this study develops a method comprising of three parts. (1) First, a simplified musculoskeletal model is constructed based on the Taylor expansion, mean value theorem and Lagrange–d’Alembert principle to complete the decoupling of the muscle model. (2) Next, for this simplified musculoskeletal model, an adaptive neuromuscular controller is designed to acquire the muscle-activation signal and realize stable tracking of the endpoint of the muscle-driven robot relative to the desired trajectory in the TDMS. For the ANC, an adaptive neural network controller with a disturbance observer is used to approximate dynamical uncertainties. (3) Using the Lyapunov method, uniform boundedness of the signals in the closed-loop system is proved. In addition, a tracking experiment is performed to validate the effectiveness of the adaptive neuromuscular controller.

Findings

The experimental results reveal that compared with other control technologies, the proposed design techniques can effectively improve control accuracy. Moreover, the proposed controller does not require extensive considerations of the geometric and antagonistic inhibition relationships, and it demonstrates anti-interference ability.

Originality/value

Musculoskeletal robots with humanoid structures have attracted considerable attention from numerous researchers owing to their potential to avoid danger for humans and the environment. The controller based on bio-muscle models has shown great performance in coordinating the redundant internal forces of TDMS. Therefore, adaptive controllers with disturbance observers are designed to improve the immunity of the system and thus directly regulate the internal forces between the bio-muscle models.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 November 2022

Shuang Han, Jing Zhang, Quanyue Yang, Zijian Yuan, Shubin Li, Fengying Cui, Chuntang Zhang and Tao Wang

The performance of the classical car-following system is easily affected by external disturbances. To enhance the performance of the classical car-following model under sudden…

Abstract

Purpose

The performance of the classical car-following system is easily affected by external disturbances. To enhance the performance of the classical car-following model under sudden external disturbances, a novel car-following model is established to smooth traffic flow.

Design/methodology/approach

This paper proposed a Proportion Integration Differentiation (PID) control strategy based on classical control theory and developed a novel car-following model. The linear system theory and Laplace transform are used to derive a closed-loop transfer function. Then, the stability condition is obtained by using the Routh stability criterion and the small gain theorem. Finally, the validity and feasibility of the PID control strategy is proved by numerical simulations.

Findings

The analytic results and the numerical simulation results show that both the integration part and the differential part have the positive effect to suppress traffic oscillation efficiently; the collaboration of these two parts has more power to improve the stability of traffic flow. It means that the proposed model integrated with the PID control strategy has the ability of anti-interference and smooth traffic compared with the classical car-following model.

Originality/value

This paper introduces the PID control strategy into the classical car-following system, which enhances the stability of the system and also provides an efficient method for optimizing the traffic flow system.

Details

Engineering Computations, vol. 39 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 June 2021

Dong Mei and Zhu-Qing Yu

This paper aims to study a disturbance rejection controller to improve the anti-interference capability and the position tracking performance of airborne radar stabilized platform…

Abstract

Purpose

This paper aims to study a disturbance rejection controller to improve the anti-interference capability and the position tracking performance of airborne radar stabilized platform that ensures the stability and clarity of synthetic aperture radar imaging.

Design/methodology/approach

This study proposes a disturbance rejection control scheme for an airborne radar stabilized platform based on the active disturbance rejection control (ADRC) inverse estimation algorithm. Exploiting the extended state observer (ESO) characteristic, an inversely ESO is developed to inverse estimate the unmodeled state and extended state of the platform system known as total disturbances, which greatly improves the estimation performance of the disturbance. Then, based on the inverse ESO result, feedback the difference between the output of the tracking differentiator and the inverse ESO result to the nonlinear state error feedback controller (NLSEF) to eliminate the effects of total disturbance and ensure the stability of the airborne radar stabilized platform.

Findings

Simulation experiments are adopted to compare the performance of the ADRC inverse estimation algorithm with that of the proportional integral derivative controller which is one of the mostly applied control schemes in platform systems. In addition, classical ADRC is compared as well. The results have shown that the ADRC inverse estimation algorithm has a better disturbance rejection performance when disturbance acts in airborne radar stabilized platform, especially disturbed by continuous airflow under some harsh air conditions.

Originality/value

The originality of this paper is exploiting the ESO characteristic to develop an inverse ESO, which greatly improves the estimation performance of the disturbance. And the ADRC inverse estimation algorithm is applied to ameliorate the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous interference under complex air conditions.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 141