Search results

1 – 10 of 587
Article
Publication date: 21 June 2023

Margarita Ntousia, Ioannis Fudos, Spyridon Moschopoulos and Vasiliki Stamati

Objects fabricated using additive manufacturing (AM) technologies often suffer from dimensional accuracy issues and other part-specific problems. This study aims to present a…

Abstract

Purpose

Objects fabricated using additive manufacturing (AM) technologies often suffer from dimensional accuracy issues and other part-specific problems. This study aims to present a framework for estimating the printability of a computer-aided design (CAD) model that expresses the probability that the model is fabricated correctly via an AM technology for a specific application.

Design/methodology/approach

This study predicts the dimensional deviations of the manufactured object per vertex and per part using a machine learning approach. The input to the error prediction artificial neural network (ANN) is per vertex information extracted from the mesh of the model to be manufactured. The output of the ANN is the estimated average per vertex error for the fabricated object. This error is then used along with other global and per part information in a framework for estimating the printability of the model, that is, the probability of being fabricated correctly on a certain AM technology, for a specific application domain.

Findings

A thorough experimental evaluation was conducted on binder jetting technology for both the error prediction approach and the printability estimation framework.

Originality/value

This study presents a method for predicting dimensional errors with high accuracy and a completely novel approach for estimating the probability of a CAD model to be fabricated without significant failures or errors that make it inappropriate for a specific application.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 July 2022

Sunil Kumar Jauhar, Hossein Zolfagharinia and Saman Hassanzadeh Amin

This research is about embedding service-based supply chain management (SCM) concepts in the education sector. Due to Canada's competitive education sector, the authors focus on…

Abstract

Purpose

This research is about embedding service-based supply chain management (SCM) concepts in the education sector. Due to Canada's competitive education sector, the authors focus on Canadian universities.

Design/methodology/approach

The authors develop a framework for evaluating and forecasting university performance using data envelopment analysis (DEA) and artificial neural networks (ANNs) to assist education policymakers. The application of the proposed framework is illustrated based on information from 16 Canadian universities and by investigating their teaching and research performance.

Findings

The major findings are (1) applying the service SCM concept to develop a performance evaluation and prediction framework, (2) demonstrating the application of DEA-ANN for computing and predicting the efficiency of service SCM in Canadian universities, and (3) generating insights to enable universities to improve their research and teaching performances considering critical inputs and outputs.

Research limitations/implications

This paper presents a new framework for universities' performance assessment and performance prediction. DEA and ANN are integrated to aid decision-makers in evaluating the performances of universities.

Practical implications

The findings suggest that higher education policymakers should monitor attrition rates at graduate and undergraduate levels and provide financial support to facilitate research and concentrate on Ph.D. programs. Additionally, the sensitivity analysis indicates that selecting inputs and outputs is critical in determining university rankings.

Originality/value

This research proposes a new integrated DEA and ANN framework to assess and forecast future teaching and research efficiencies applying the service supply chain concept. The findings offer policymakers insights such as paying close attention to the attrition rates of undergraduate and postgraduate programs. In addition, prioritizing internal research support and concentrating on Ph.D. programs is recommended.

Details

Benchmarking: An International Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 17 March 2023

Le Wang, Liping Zou and Ji Wu

This paper aims to use artificial neural network (ANN) methods to predict stock price crashes in the Chinese equity market.

Abstract

Purpose

This paper aims to use artificial neural network (ANN) methods to predict stock price crashes in the Chinese equity market.

Design/methodology/approach

Three ANN models are developed and compared with the logistic regression model.

Findings

Results from this study conclude that the ANN approaches outperform the traditional logistic regression model, with fewer hidden layers in the ANN model having superior performance compared to the ANNs with multiple hidden layers. Results from the ANN approach also reveal that foreign institutional ownership, financial leverage, weekly average return and market-to-book ratio are the important variables when predicting stock price crashes, consistent with results from the traditional logistic model.

Originality/value

First, the ANN framework has been used in this study to forecast the stock price crashes and compared to the traditional logistic model in the world’s largest emerging market China. Second, the receiver operating characteristics curves and the area under the ROC curve have been used to evaluate the forecasting performance between the ANNs and the traditional approaches, in addition to some traditional performance evaluation methods.

Details

Pacific Accounting Review, vol. 35 no. 4
Type: Research Article
ISSN: 0114-0582

Keywords

Open Access
Article
Publication date: 9 November 2023

Abdulmohsen S. Almohsen, Naif M. Alsanabani, Abdullah M. Alsugair and Khalid S. Al-Gahtani

The variance between the winning bid and the owner's estimated cost (OEC) is one of the construction management risks in the pre-tendering phase. The study aims to enhance the…

Abstract

Purpose

The variance between the winning bid and the owner's estimated cost (OEC) is one of the construction management risks in the pre-tendering phase. The study aims to enhance the quality of the owner's estimation for predicting precisely the contract cost at the pre-tendering phase and avoiding future issues that arise through the construction phase.

Design/methodology/approach

This paper integrated artificial neural networks (ANN), deep neural networks (DNN) and time series (TS) techniques to estimate the ratio of a low bid to the OEC (R) for different size contracts and three types of contracts (building, electric and mechanic) accurately based on 94 contracts from King Saud University. The ANN and DNN models were evaluated using mean absolute percentage error (MAPE), mean sum square error (MSSE) and root mean sums square error (RMSSE).

Findings

The main finding is that the ANN provides high accuracy with MAPE, MSSE and RMSSE a 2.94%, 0.0015 and 0.039, respectively. The DNN's precision was high, with an RMSSE of 0.15 on average.

Practical implications

The owner and consultant are expected to use the study's findings to create more accuracy of the owner's estimate and decrease the difference between the owner's estimate and the lowest submitted offer for better decision-making.

Originality/value

This study fills the knowledge gap by developing an ANN model to handle missing TS data and forecasting the difference between a low bid and an OEC at the pre-tendering phase.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 23 January 2023

Hussein Y.H. Alnajjar and Osman Üçüncü

Artificial intelligence (AI) models are demonstrating day by day that they can find long-term solutions to improve wastewater treatment efficiency. Artificial neural networks…

1476

Abstract

Purpose

Artificial intelligence (AI) models are demonstrating day by day that they can find long-term solutions to improve wastewater treatment efficiency. Artificial neural networks (ANNs) are one of the most important of these models, and they are increasingly being used to forecast water resource variables. The goal of this study was to create an ANN model to estimate the removal efficiency of biological oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP) and total suspended solids (TSS) at the effluent of various primary and secondary treatment methods in a wastewater treatment plant (WWTP).

Design/methodology/approach

The MATLAB App Designer model was used to generate the data set. Various combinations of wastewater quality data, such as temperature(T), TN, TP and hydraulic retention time (HRT) are used as inputs into the ANN to assess the degree of effect of each of these variables on BOD, TN, TP and TSS removal efficiency. Two of the models reflect two different types of primary treatment, while the other nine models represent different types of subsequent treatment. The ANN model’s findings are compared to the MATLAB App Designer model. For evaluating model performance, mean square error (MSE) and coefficient of determination statistics (R2) are utilized as comparative metrics.

Findings

For both training and testing, the R values for the ANN models were greater than 0.99. Based on the comparisons, it was discovered that the ANN model can be used to estimate the removal efficiency of BOD, TN, TP and TSS in WWTP and that the ANN model produces very similar and satisfying results to the APPDESIGNER model. The R-value (Correlation coefficient) of 0.9909 and the MSE of 5.962 indicate that the model is accurate. Because of the many benefits of the ANN models used in this study, it has a lot of potential as a general modeling tool for a range of other complicated process systems that are difficult to solve using conventional modeling techniques.

Originality/value

The objective of this study was to develop an ANN model that could be used to estimate the removal efficiency of pollutants such as BOD, TN, TP and TSS at the effluent of various primary and secondary treatment methods in a WWTP. In the future, the ANN could be used to design a new WWTP and forecast the removal efficiency of pollutants.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 4
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 25 February 2022

Paulo Modesti, Jhonatan Kobylarz Ribeiro and Milton Borsato

This paper aims to develop a method based on artificial intelligence capable of predicting the due date (DD) of job shops in real-time, aiming to assist in the decision-making…

Abstract

Purpose

This paper aims to develop a method based on artificial intelligence capable of predicting the due date (DD) of job shops in real-time, aiming to assist in the decision-making process of industries.

Design/methodology/approach

This paper chooses to use the methodological approach Design Science Research (DSR). The DSR aims to build solutions based on technology to solve relevant issues, where its research results from precise methods in the evaluation and construction of the model. The steps of the DSR are identification of the problem and motivation, definition of the solution’s objectives, design and development, demonstration, evaluation of the solution and the communication of results.

Findings

Along with this work, it is possible to verify that the proposed method allows greater accuracy in the DD definition forecasts when compared to conventional calculations.

Research limitations/implications

Some limitations of this study can be pointed. It is possible to mention questions related to the tasks to be informed by users, as they could lead to problems in the performance of the artifact as the input data may not be correctly posted due to the misunderstanding of the question by part of the users.

Originality/value

The proposed artifact is a method capable of contributing to the development of the manufacturing industry to improve the forecast of manufacturing dates, assisting in making decisions related to production planning. The use of real production data contributed to creating, demonstrating and evaluating the artifact. This approach was important for developing the method allowing more reliability.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 54 no. 2
Type: Research Article
ISSN: 2059-5891

Keywords

Open Access
Article
Publication date: 23 January 2024

Luís Jacques de Sousa, João Poças Martins, Luís Sanhudo and João Santos Baptista

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase…

Abstract

Purpose

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase, construction companies must assess the scope of each task and map the client’s expectations to an internal database of tasks, resources and costs. Quantity surveyors carry out this assessment manually with little to no computer aid, within very austere time constraints, even though these results determine the company’s bid quality and are contractually binding.

Design/methodology/approach

This paper seeks to compile applications of machine learning (ML) and natural language processing in the architectural engineering and construction sector to find which methodologies can assist this assessment. The paper carries out a systematic literature review, following the preferred reporting items for systematic reviews and meta-analyses guidelines, to survey the main scientific contributions within the topic of text classification (TC) for budgeting in construction.

Findings

This work concludes that it is necessary to develop data sets that represent the variety of tasks in construction, achieve higher accuracy algorithms, widen the scope of their application and reduce the need for expert validation of the results. Although full automation is not within reach in the short term, TC algorithms can provide helpful support tools.

Originality/value

Given the increasing interest in ML for construction and recent developments, the findings disclosed in this paper contribute to the body of knowledge, provide a more automated perspective on budgeting in construction and break ground for further implementation of text-based ML in budgeting for construction.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 31 May 2023

Xiaojie Xu and Yun Zhang

For policymakers and participants of financial markets, predictions of trading volumes of financial indices are important issues. This study aims to address such a prediction…

1098

Abstract

Purpose

For policymakers and participants of financial markets, predictions of trading volumes of financial indices are important issues. This study aims to address such a prediction problem based on the CSI300 nearby futures by using high-frequency data recorded each minute from the launch date of the futures to roughly two years after constituent stocks of the futures all becoming shortable, a time period witnessing significantly increased trading activities.

Design/methodology/approach

In order to answer questions as follows, this study adopts the neural network for modeling the irregular trading volume series of the CSI300 nearby futures: are the research able to utilize the lags of the trading volume series to make predictions; if this is the case, how far can the predictions go and how accurate can the predictions be; can this research use predictive information from trading volumes of the CSI300 spot and first distant futures for improving prediction accuracy and what is the corresponding magnitude; how sophisticated is the model; and how robust are its predictions?

Findings

The results of this study show that a simple neural network model could be constructed with 10 hidden neurons to robustly predict the trading volume of the CSI300 nearby futures using 1–20 min ahead trading volume data. The model leads to the root mean square error of about 955 contracts. Utilizing additional predictive information from trading volumes of the CSI300 spot and first distant futures could further benefit prediction accuracy and the magnitude of improvements is about 1–2%. This benefit is particularly significant when the trading volume of the CSI300 nearby futures is close to be zero. Another benefit, at the cost of the model becoming slightly more sophisticated with more hidden neurons, is that predictions could be generated through 1–30 min ahead trading volume data.

Originality/value

The results of this study could be used for multiple purposes, including designing financial index trading systems and platforms, monitoring systematic financial risks and building financial index price forecasting.

Details

Asian Journal of Economics and Banking, vol. 8 no. 1
Type: Research Article
ISSN: 2615-9821

Keywords

Article
Publication date: 27 February 2023

Sameer Kumar, Yogesh Marawar, Gunjan Soni, Vipul Jain, Anand Gurumurthy and Rambabu Kodali

Lean manufacturing (LM) is prevalent in the manufacturing industry; thus, focusing on fast and accurate lean tool implementation is the new paradigm in manufacturing. Value stream…

Abstract

Purpose

Lean manufacturing (LM) is prevalent in the manufacturing industry; thus, focusing on fast and accurate lean tool implementation is the new paradigm in manufacturing. Value stream mapping (VSM) is one of the many LM tools. It is understood that combining LM implementation with VSM tools can generate better outcomes. This paper aims to develop an expert system for optimal sequencing of VSM tools for lean implementation.

Design/methodology/approach

A proposed artificial neural network (ANN) model is based on the analytic network process (ANP) devised for this study. It will facilitate the selection of VSM tools in an optimal sequence.

Findings

Considering different types of wastes and their level of occurrence, organizations need a set of specific tools that will be effective in the elimination of these wastes. The developed ANP model computes a level of interrelation between wastes and VSM tools. The ANN is designed and trained by data obtained from numerous case studies, so it can predict the accurate sequence of VSM tools for any new case data set.

Originality/value

The design and use of the ANN model provide an integrated result of both empirical and practical cases, which is more accurate because all viable aspects are then considered. The proposed modeling approach is validated through implementation in an automobile manufacturing company. It has resulted in benefits, namely, reduction in bias, time required, effort required and complexity of the decision process. More importantly, according to all performance criteria and subcriteria, the main goal of this research was satisfied by increasing the accuracy of selecting the appropriate VSM tools and their optimal sequence for lean implementation.

Details

International Journal of Lean Six Sigma, vol. 14 no. 7
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 8 August 2022

Sitsofe Kwame Yevu, Ann Tit Wan Yu, Amos Darko, Gabriel Nani and David J. Edwards

This study aims to investigate the dynamic influences of clustered barriers that hinder electronic procurement technology (EPT) implementation in construction procurement, using…

Abstract

Purpose

This study aims to investigate the dynamic influences of clustered barriers that hinder electronic procurement technology (EPT) implementation in construction procurement, using the neuro-fuzzy system.

Design/methodology/approach

A comprehensive literature review was conducted and 21 barriers to EPT implementation within construction projects were identified. Based on an expert survey, 121 datasets were gathered for this study. Using mean and normalization analysis for the datasets, 15 out of the 21 barriers were deemed to have critical influences in EPT barriers phenomenon. Subsequently, the critical barriers were classified into five groups: human-related; technological risk-related; government-related; industry growth-related; and financial-related. The relationships and influence patterns between the groups of barriers to EPT implementation were analyzed using the neuro-fuzzy system. Furthermore, sensitivity analysis was performed to examine the dynamic influence levels of the barriers within the hindrance level composition.

Findings

The results reveal that addressing one barrier group does not reduce the high levels of hindrances experienced in EPT implementation. However, addressing at least two barrier groups mostly tends to reduce the hindrance levels for EPT implementation. Further, this study revealed that addressing some barrier group pairings, such as technological risk-related and government-related barriers, while other barrier groups remained at a high level, still resulted in high levels of hindrances to EPT implementation in construction procurement.

Research limitations/implications

This study provides insights for researchers to help them contribute to the development of theory with contemporary approaches based on the influence patterns of barrier interrelationships.

Practical implications

This study provides a model that would help practitioners and decision makers in construction procurement to understand and effectively determine the complex and dynamic influences of barrier groups to EPT uptake, for the development of suitable mitigation strategies.

Originality/value

This study provides novel insights into the complex influence patterns among grouped barriers concerning EPT adoption in the construction industry. Researchers and practitioners are equipped with knowledge on the influence patterns of barriers. This knowledge aids the development of effective strategies that mitigate the combined groups of barriers, and promote the wider implementation of EPT in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 587