Search results

1 – 2 of 2
Article
Publication date: 14 December 2023

Prathamesh Gaikwad and Sandeep Sathe

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance…

Abstract

Purpose

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance of reinforced concrete (RC). In addition, the utilization of inexpensive and abundantly available FA as a cement replacement in concrete has several benefits including reduced OPC usage and elimination of the FA disposal problem.

Design/methodology/approach

Reinforcement corrosion and carbonation significantly affect the strength and durability of the RC structures. Also, the utilization of FA as green corrosion inhibitors, which are nontoxic and environmentally friendly alternatives. This review discusses the effects of FA on the mechanical characteristics of concrete. Also, this review analyzes the impact of FA as a partial replacement of cement in concrete and its effect on the depth of carbonation in concrete elements and the corrosion rate of embedded steel as well as the chemical composition and microstructure (X-ray diffraction analysis and scanning electron microscopy) of FA concrete were also reviewed.

Findings

This review provides a clear analysis of the available study, providing a thorough overview of the current state of knowledge on this topic. Regarding concrete CS, the findings indicate that the incorporation of FA often leads to a loss in early-age strength. However, as the curing period increased, the strength of fly ash concrete (FAC) increased with or even surpassed that of conventional concrete. Analysis of the accelerated carbonation test revealed that incorporating FA into the concrete mix led to a shallower carbonation depth and slower diffusion of carbon dioxide (CO2) into the concrete. Furthermore, the half-cell potential test shows that the inclusion of FA increases the durability of RC by slowing the rate of steel-reinforcement corrosion.

Originality/value

This systematic review analyzes a wide range of existing studies on the topic, providing a comprehensive overview of the research conducted so far. This review intends to critically assess the enhancements in mechanical and durability attributes (such as CS, carbonation and corrosion resistance) of FAC and FA-RC. This systematic review has practical implications for the construction and engineering industries. This can support engineers and designers in making informed decisions regarding the use of FA in concrete mixtures, considering both its benefits and potential drawbacks.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 February 2024

Khameel B. Mustapha, Eng Hwa Yap and Yousif Abdalla Abakr

Following the recent rise in generative artificial intelligence (GenAI) tools, fundamental questions about their wider impacts have started to reverberate around various…

Abstract

Purpose

Following the recent rise in generative artificial intelligence (GenAI) tools, fundamental questions about their wider impacts have started to reverberate around various disciplines. This study aims to track the unfolding landscape of general issues surrounding GenAI tools and to elucidate the specific opportunities and limitations of these tools as part of the technology-assisted enhancement of mechanical engineering education and professional practices.

Design/methodology/approach

As part of the investigation, the authors conduct and present a brief scientometric analysis of recently published studies to unravel the emerging trend on the subject matter. Furthermore, experimentation was done with selected GenAI tools (Bard, ChatGPT, DALL.E and 3DGPT) for mechanical engineering-related tasks.

Findings

The study identified several pedagogical and professional opportunities and guidelines for deploying GenAI tools in mechanical engineering. Besides, the study highlights some pitfalls of GenAI tools for analytical reasoning tasks (e.g., subtle errors in computation involving unit conversions) and sketching/image generation tasks (e.g., poor demonstration of symmetry).

Originality/value

To the best of the authors’ knowledge, this study presents the first thorough assessment of the potential of GenAI from the lens of the mechanical engineering field. Combining scientometric analysis, experimentation and pedagogical insights, the study provides a unique focus on the implications of GenAI tools for material selection/discovery in product design, manufacturing troubleshooting, technical documentation and product positioning, among others.

Details

Interactive Technology and Smart Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-5659

Keywords

Access

Year

Last 6 months (2)

Content type

Earlycite article (2)
1 – 2 of 2