Search results

1 – 10 of 26
Article
Publication date: 19 July 2024

Xinran Yang, Junhui Du, Hongshuo Chen, Chuanjin Cui, Haibin Liu and Xuechao Zhang

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with…

Abstract

Purpose

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with nanomaterials as channels play an important role in the field of heavy metal ion detection. This paper aims to review the research progress of silicon nanowire, graphene and carbon nanotube field-effect tube biosensors for heavy metal ion detection, so as to provide technical support and practical experience for the application and promotion of FET.

Design/methodology/approach

The article introduces the structure and principle of three kinds of FET with three kinds of nanomaterials, namely, silicon nanowires, graphene and carbon nanotubes, as the channels, and lists examples of the detection of common heavy metal ions by the three kinds of FET sensors in recent years. The article focuses on the advantages and disadvantages of the three sensors, puts forward measures to improve the performance of the FET and looks forward to its future development direction.

Findings

Compared with conventional instrumental analytical methods, FETs prepared using nanomaterials as channels have the advantages of fast response speed, high sensitivity and good selectivity, among which the diversified processing methods of graphene, the multi-heavy metal ions detection of silicon nanowires and the very low detection limit and wider detection range of carbon nanotubes have made them one of the most promising detection tools in the field of heavy metal ions detection. Of course, through in-depth analysis, this type of sensor has certain limitations, such as high cost and strict process requirements, which are yet to be solved.

Originality/value

This paper elaborates on the detection principle and classification of field-effect tube, investigates and researches the application status of three kinds of FET biosensors in the detection of common heavy metal ions. By comparing the advantages and disadvantages of each of the three sensors in practical applications, the paper focuses on the feasibility of improvement measures, looks forward to the development trend in the field of heavy metal detection and ultimately promotes the application of field-effect tube development technology to continue to progress, so that its performance continues to improve and the application field is constantly expanding.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 August 2023

Md Azlin Md Said, Fatimah De’nan, Nor Salwani Hashim, Bong Wely and Chuah Hoi Ching

The purpose of this study is to further investigate the potential benefits brought about by the development of modern technology in the steel construction industry. Specifically…

Abstract

Purpose

The purpose of this study is to further investigate the potential benefits brought about by the development of modern technology in the steel construction industry. Specifically, the study focuses on the optimization of tapered members for pre-engineered steel structures, aligning with Eurocode 3 standards. By emphasizing the effectiveness of material utilization in construction, this research aims to enhance the structural performance and safety of buildings. Moreover, it recognizes the pivotal role played by such advancements in promoting economic growth through the reduction of material waste, optimization of cost-efficiency and support for sustainable construction practices.

Design/methodology/approach

Structural performance at initial analysis and final analysis of the selected critical frame were carried out using Dlubal RSTAB 8.18. The structural frame stability and sway imperfections were checked based on MS EN1993-1-1:2005 (EC3). To assess the structural stability of the portal frame using MS EN 1993-1-1:2005 (EC3), cross-sectional resistance and member buckling resistance were verified based on Clause 6.2.4 – Compression, Clause 6.2.5 – Bending Moment, Clause 6.2.6 – Shear, Clause 6.2.8 – Bending and Shear, Clause 6.2.9 – Bending and Axial Force and Clause 6.3.4 – General Method for Lateral and Lateral Torsional Buckling of Structural Components.

Findings

In this study, the cross sections of the web-tapered rafter and column were classified under Class 4. These involved the consideration of elastic shear resistance and effective area on the critical steel sections. The application of the General Method on the verification of the resistance to lateral and lateral torsional buckling for structural components required the extraction of some parameters using structural analysis software. From the results, there was only 5.90% of mass difference compared with the previous case study.

Originality/value

By classifying the web-tapered cross sections of the rafter and column under Class 4, the study accounts for important factors such as elastic shear resistance and effective area on critical steel sections.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 September 2024

Sérgio B Gonçalves, Pedro Dantas, Francisco Guedes de Melo, João Gouveia, José Guimarães Consciência, Jorge Martins and Miguel Tavares da Silva

Arthroscopic osteochondroplasty is a minimally invasive procedure that has been used to treat femoroacetabular impingement syndrome, leading to significant improvements in…

Abstract

Purpose

Arthroscopic osteochondroplasty is a minimally invasive procedure that has been used to treat femoroacetabular impingement syndrome, leading to significant improvements in patients’ clinical outcomes and quality of life. However, some studies suggest that inadequate bone resection can substantially alter hip biomechanics. These modifications may generate different contact profiles and higher contact forces, increasing the risk of developing premature joint degeneration. To improve control over bone resection and biomechanical outcomes during arthroscopic osteochondroplasty surgery, this study aims to present a novel system for measuring femoroacetabular contact forces.

Design/methodology/approach

Following a structured design process for the development of medical devices, the steps required for its production using additive manufacturing with material extrusion and easily accessible sensors are described. The system comprises two main devices, one for measuring femoroacetabular contact forces and the other for quantifying the force applied by the assistant surgeon during lower limb manipulation. The hip device was designed for use within an arthroscopic environment, eliminating the need for additional portals.

Findings

To evaluate its performance, the system was first tested in a laboratory setup and later under in-service conditions. The 3D printing parameters were tuned to ensure the watertighness of the device and sustain the intraoperative fluid pressures. The final prototype allowed for the controlled measurement of the hip contact forces in real-time.

Originality/value

Using additive manufacturing and readily available sensors, the present work presents the first device to quantify joint contact forces during arthroscopic surgeries, serving as an additional tool to support the surgeon’s decision-making process regarding bone resection.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Details

Hegemonic Masculinity, Caste, and the Body
Type: Book
ISBN: 978-1-80117-362-9

Abstract

Details

Intelligence and State Surveillance in Modern Societies
Type: Book
ISBN: 978-1-83549-098-3

Article
Publication date: 23 September 2024

Souty Adel Nassef Beskhyroun and Mohamed Abdel-Aziz

This paper aims to assess the efficiency of emulsified essential oils in glycerol as eco-friendly antimicrobial and plasticized agents added to the biopolymer of gelatin for…

Abstract

Purpose

This paper aims to assess the efficiency of emulsified essential oils in glycerol as eco-friendly antimicrobial and plasticized agents added to the biopolymer of gelatin for lining historical oil paintings on canvases.

Design/methodology/approach

Cedar oil, cinnamon oil and their mixtures were emulsified in glycerol and incorporated into gelatin adhesive as green biocides and plasticizers. Physical, biological, chemical and mechanical tests were conducted on experimental mock-ups to assess the gelatin-based adhesive formulations for the reinforcement of canvas supports. Scanning electron microscope, colorimetric measurements, antimicrobial activity test, attenuated total reflection-Fourier transform infrared spectroscopy, tensile strength and elongation tests were carried out on the mock-ups before and after the artificial aging.

Findings

The formulations of gelatin-based adhesive with cinnamon and cinnamon-cedar mixture emulsified in glycerol proved their efficiency on the antimicrobial activity test, chemically delaying the decomposition of gelatin and accordingly providing compatible mechanical properties. Gelatin-based adhesive with emulsified cinnamon oil showed a slight yellowing that was quite improved with the mixture of the cinnamon-cedar-based adhesive formulation.

Originality/value

This study promotes a green approach to lining historical oil paintings by developing green formulations from bio-based origins that minimize the shrinkage and microbial infection of gelatin for lining paintings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 September 2024

Muhammad Zafar Yaqub, Saeed Badghish, Rana Muhammad Shahid Yaqub, Imran Ali and Noor Sahar Ali

This study aims to integrate and extend leading contemporary underpinning frameworks such as the Stimulus Organism Response (S-O-R) model, Technology Acceptance Model (TAM) and…

Abstract

Purpose

This study aims to integrate and extend leading contemporary underpinning frameworks such as the Stimulus Organism Response (S-O-R) model, Technology Acceptance Model (TAM) and Unified Theory of Acceptance and Use of Technology (UTAUT) to assess the determinants of M-commerce usage during COVID-19 times. Besides direct effects, the study examines the mediating role of behavioral intention in affecting the relationship between a few external stimuli, internal states (of the organism) and M-commerce usage (the response). The study has also examined the moderating role of habitual behavior in the relationship between behavioral intention and M-commerce usage.

Design/methodology/approach

Data were gathered from 312 customers through an online survey using a structured questionnaire. PLS-based SEM, using Smart PLS 4.0, was employed to calibrate the measurement and structural models.

Findings

The study found that stimuli like social influence, perceived ease of use and perceived value substantially affected M-commerce usage. Behavioral intention has been found to mediate these cause-and-effect relationships partially or fully among the subject constructs. Additionally, a significant negative but weak moderating impact of habit (or habitual behavior) on the relationship between behavioral intentions and M-commerce usage has been corroborated.

Originality/value

Several studies have investigated the factors influencing the adoption and continued usage of M-commerce services while appealing to diverse theoretical frameworks. However, more research has yet to be expended to arrive at an integrated explanation grounded in these theoretical frameworks to examine the dynamics of M-commerce usage in tempestuous times like the COVID-19 outbreak. The most significant (counterintuitive) findings have been suppressing the effects of otherwise crucial elements like perceived security and habit in prompting M-commerce usage in the face of the socio-psychological pressures stemming from COVID-19 restrictions and consumers' lack of digital readiness. The study's outcomes offer several theoretical and practical implications for researchers, managers, practitioners, businesses and policymakers to develop effective strategies to mature M-commerce usage among the masses, especially during unusual times like COVID-19.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2054-6238

Keywords

Article
Publication date: 17 September 2024

Kaoxun Chi, Fei Yan, Chengxuan Zhang and Jianping Wang

Against the backdrop of the global reshaping of supply chains, supply chain ecosystems have emerged as a critical force in ensuring the high-quality development of enterprises and…

Abstract

Purpose

Against the backdrop of the global reshaping of supply chains, supply chain ecosystems have emerged as a critical force in ensuring the high-quality development of enterprises and fostering stable economic growth. However, a systematic theoretical understanding of how to construct these supply chain ecosystems remains nascent. This study aims to explore the mechanism of the process of building supply chain ecosystems between digital innovation platform enterprises and digital trading platform enterprises from the perspective of dynamic capabilities.

Design/methodology/approach

An explanatory case study is conducted based on a theoretical framework grounded on dynamic capabilities view. Two preeminent digital platform enterprises in China (Haier and JD.com) are studied. The authors primarily conducted this research by collecting a large volume of these Chinese public materials.

Findings

First, the construction processes of supply chain ecosystems in both digital platform enterprises can be delineated into three stages: embryonic, development and maturity. Second, digital innovation platform enterprises’ construction process is primarily influenced by factors such as production and operational collaboration, consumer demand and research and development. This influence is exerted through interactions on digital platforms and within sub-ecosystems. Meanwhile, digital trading platform enterprises’ construction process is influenced by factors such as infrastructure development, consumer demand and financial support, driving dynamic capability formation through multi-party cooperation and ecological interactions based on conceptual identity.

Practical implications

In the establishment of supply chain ecosystems, digital platform enterprises should prioritize the cultivation of opportunity expansion, resource integration and symbiotic relationship capabilities. Furthermore, this study shows that digital platform enterprises need to actively adjust their interactive relationships with cooperating enterprises based on changes in the market, industry, policies and their own developmental stages.

Originality/value

This study addresses prior deficiencies in understanding the comprehensive construction of supply chain ecosystems and provides significant insights to enhance the theoretical foundation of supply chain ecosystem studies. Additionally, this paper uncovers the dynamic capability development behaviors and contextual features inherent in the construction process of supply chain ecosystems by digital platform enterprises.

Details

Supply Chain Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1359-8546

Keywords

Open Access
Article
Publication date: 19 August 2024

Áine Carroll, Jane McKenzie and Claire Collins

The aim of this study was to explore and understand the leadership experiences of medical consultants prior to a major hospital move. Health and care is becoming increasingly…

Abstract

Purpose

The aim of this study was to explore and understand the leadership experiences of medical consultants prior to a major hospital move. Health and care is becoming increasingly complex and there is no greater challenge than the move to a new hospital. Effective leadership has been identified as being essential for successful transition. However, there is very little evidence of how medical consultants experience effective leadership.

Design/methodology/approach

A qualitative methodology was utilized with one-to-one semi-structured interviews conducted with ten medical consultants. These were transcribed verbatim and analyzed using inductive thematic analysis. The research complied with the consolidated criteria for reporting qualitative research (COREQ).

Findings

Four themes were found to influence medical consultants’ experience of leadership: collaboration, patient centredness, governance and knowledge mobilization. Various factors were identified that negatively influenced their leadership effectiveness. The findings suggest that there are a number of factors that influence complexity leadership effectiveness. Addressing these areas may enhance leadership effectiveness and the experience of leadership in medical consultants.

Research limitations/implications

This study provides a rich exploration of medical consultants’ experience of collective leadership prior to a transition to a new hospital and provides new understandings of the way collective leadership is experienced in the lead up to a major transition and makes recommendations for future leadership research and practice.

Practical implications

The findings suggest that there are a number of factors that influence complexity leadership effectiveness. Addressing these areas may enhance leadership effectiveness and the experience of leadership in medical consultants.

Social implications

Clinical leadership is associated with better outcomes for patients therefore any interventions that enhance leadership capability will improve outcomes for patients and therefore benefit society.

Originality/value

This is the first research to explore medical consultants’ experience of collective leadership prior to a transition to a new hospital.

Details

Journal of Health Organization and Management, vol. 38 no. 9
Type: Research Article
ISSN: 1477-7266

Keywords

Article
Publication date: 18 July 2024

Anindya Bose, Sarthak Sengupta and Sayori Biswas

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering…

Abstract

Purpose

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering closely to pertinent electrochemical characterizations.

Design/methodology/approach

Sensors are the key elements of the modern electronics era through which all the possible physical quantities can be detected and converted into their equivalent electrical form and processed further. But to make the sensing environment better, various types of innovative architectures are being developed nowadays and among them interdigitated electrodes are quite remarkable in terms of their sensing capability. They are a well-qualified candidate in the field of gas sensing and biosensing, but even their sensitivities are getting saturated due to their physical dimensions. Most of the thin film IDEAs fabricated by conventional optical lithographic techniques do not possess a high surface-to-volume ratio to detect the target specified and that reduces their sensitivity factor. In this context, a classic conductive carbon-based highly sensitive three dimensional (3D) IDEA-enabled biosensing system has been conceived on a transparent and flexible substrate to measure the amount of glucose concentration present in human blood. 3D IDEA possesses a way better capacitive sensing behavior compared to conventional thin film microcapacitive electrodes. To transmit the target biological analyte sample property for the detection purpose to the interdigitated array-based sensing platform, the design of a microfluidic channel is initiated on the same substrate. The complex 3D Inter Digital array structure improves the overall capacitance of the entire sensing platform and the reactive surface area as well. The manufactured integrated device displays a decent value of sensitivity in the order of 5.6 µA mM−1 cm−2.

Findings

Development of a low-cost array-based integrated and highly flexible microfluidic biochip to extract the quantity of glucose present in human blood.

Originality/value

Potential future research opportunities in the realm of integrated miniaturized, low-cost smart biosensing systems may arise from this study.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 26