Search results

1 – 10 of 12
Open Access
Article
Publication date: 12 December 2022

Weicheng Guo, Chongjun Wu, Xiankai Meng, Chao Luo and Zhijian Lin

Molecular dynamics is an emerging simulation technique in the field of machining in recent years. Many researchers have tried to simulate different processing methods of various…

Abstract

Purpose

Molecular dynamics is an emerging simulation technique in the field of machining in recent years. Many researchers have tried to simulate different processing methods of various materials with the theory of molecular dynamics (MD), and some preliminary conclusions have been obtained. However, the application of MD simulation is more limited compared with traditional finite element model (FEM) simulation technique due to the complex modeling approach and long computation time. Therefore, more studies on the MD simulations are required to provide a reliable theoretical basis for the nanoscale interpretation of grinding process. This study investigates the crystal structures, dislocations, force, temperature and subsurface damage (SSD) in the grinding of iron-nickel alloy using MD analysis.

Design/methodology/approach

In this study the simulation model is established on the basis of the workpiece and single cubic boron nitride (CBN) grit with embedded atom method and Morse potentials describing the forces and energies between different atoms. The effects of grinding parameters on the material microstructure are studied based on the simulation results.

Findings

When CBN grit goes through one of the grains, the arrangement of atoms within the grain will be disordered, but other grains will not be easily deformed due to the protection of the grain boundaries. Higher grinding speed and larger cutting depth can cause greater impact of grit on the atoms, and more body-centered cubic (BCC) structures will be destroyed. The dislocations will appear in grain boundaries due to the rearrangement of atoms in grinding. The increase of grinding speed results in the more transformation from BCC to amorphous structures.

Originality/value

This study is aimed to study the grinding of Fe-Ni alloy (maraging steel) with single grit through MD simulation method, and to reveal the microstructure evolution within the affected range of SSD layer in the workpiece. The simulation model of polycrystalline structure of Fe-Ni maraging steel and grinding process of single CBN grit is constructed based on the Voronoi algorithm. The atomic accumulation, transformation of crystal structures, evolution of dislocations as well as the generation of SSD are discussed according to the simulation results.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 10 May 2018

Chris Mason, Jo Barraket and Cristina Neesham

Abstract

Details

Social Enterprise Journal, vol. 14 no. 2
Type: Research Article
ISSN: 1750-8614

Open Access
Book part
Publication date: 4 May 2018

Khusrizal, Basyaruddin, R.D.H. Rambe and I. Setiawan

Purpose – The research was carried out in order to study the composition of minerals, content of total-K, total-Ca, total-Mg, and exchangeable of K, Ca, Mg in volcanish ash from…

Abstract

Purpose – The research was carried out in order to study the composition of minerals, content of total-K, total-Ca, total-Mg, and exchangeable of K, Ca, Mg in volcanish ash from Sinabung volcano eruption.

Design/Methodology/Approach – The volcanic ash material in amount of 5 kg was collected from the depth of 0–20 cm and 21–41 cm. Mineral composition was determined by using line counting method; total contents of K, Ca, and Mg were measured by HCl 1N extraction, and exchangeable of K, Ca, and Mg was measured by NH4OAc 1N pH 7.0 extraction.

Purpose – The results depicted in volcanic ash layer at the depth of 0–20 cm found some minerals such as plagioclase (34%), hypersthene (9%), augite (3%), hornblende/amphibole (5%), and volcanic glass (1%). These minerals were also found in different amounts at a depth of 21–41 cm. Hypersthene and amphibole were higher and augite was lower at a depth of 0–20 cm than 21–41 cm. The total content of K, Ca, and Mg was found to be 2.27%, 8.12%, and 2.28%, respectively, at a depth of 0–20 cm. The exchangeable of K, Ca, and Mg was found in an amount of 1.89 me/100 g, 20.71 me/100 g, and 1.62 me/100 g, respectively. The total content of K, Ca, and Mg was not available to plants but could potentially be as a source of plant nutrient after weathering while exchangeable form can be uptaken by plant directly.

Research Limitations/Implications – Based on the composition of the minerals, total, and exchangeable of K, Ca, and Mg that the material of volcanic ash, it could potentially be used as source of fertilizers.

Originality/Value – The composition of primary minerals contained in volcanic ash and to know the amount of elements K, Ca, and Mg-associated minerals either in total or exchange.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 2 August 2019

Maria de Lourdes Miranda-Medina, Christian Tomastik, Tia Truglas, Heiko Groiss and Martin Jech

The purpose of this paper is to provide a general picture for describing the formed tribofilm, including chemical and physical aspects in the micro-scale and the nano-scale. In a…

1189

Abstract

Purpose

The purpose of this paper is to provide a general picture for describing the formed tribofilm, including chemical and physical aspects in the micro-scale and the nano-scale. In a previous study, the durability of zinc dialkyl dithiophosphate (ZDDP) tribofilms on cylinder liner samples has been investigated in a tribometer model system by using fresh and aged fully formulated oils and replacing them with PAO8 without additives. Analyses of the derived tribofilms by means of X-ray photoelectron spectroscopy and scanning electron microscopy could give some hints about the underlying mechanisms of the tribofilm build-up and wear performance, but a final model has not been achieved.

Design/methodology/approach

Thus, characterisation of these tribofilms by means of focused ion beam-transmission electron microscopy (FIB-TEM) and energy dispersive X-ray spectroscopy is presented and a concluding model of the underlying mechanisms of tribofilm build-up is discussed in this paper.

Findings

For tribotests running first with fresh fully formulated engine oil, a rather homogeneous ZDDP-like tribofilm is found underneath a carbon rich tribofilm after changing to non-additivated PAO8. However, when the tests run first with aged fully formulated engine oil, no ZDDP-like tribofilm has been found after changing to non-additivated PAO8, but a wear protective carbon rich tribofilm.

Originality/value

The obtained results provide insights into the structure and durability of tribofilms. Carbon-based tribofilms are built up on the basis of non-additivated PAO8 because of the previously present ZDDP tribofilms, which suggests an alternative way to reducing the consumption of antiwear additives.

Details

Industrial Lubrication and Tribology, vol. 72 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 23 August 2011

486

Abstract

Details

Circuit World, vol. 37 no. 3
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 2 August 2011

John Ling

549

Abstract

Details

Microelectronics International, vol. 28 no. 3
Type: Research Article
ISSN: 1356-5362

Content available
Article
Publication date: 28 June 2011

599

Abstract

Details

Sensor Review, vol. 31 no. 3
Type: Research Article
ISSN: 0260-2288

Content available
Book part
Publication date: 30 July 2018

Abstract

Details

Marketing Management in Turkey
Type: Book
ISBN: 978-1-78714-558-0

Open Access
Article
Publication date: 16 April 2019

Ted Brown, Stephen Isbel, Alexandra Logan and Jamie Etherington

Academic integrity is the application of honest, ethical and responsible behaviours to all facets of students’ scholarly endeavours and is the moral code of academia. The…

3207

Abstract

Purpose

Academic integrity is the application of honest, ethical and responsible behaviours to all facets of students’ scholarly endeavours and is the moral code of academia. The international literature reports the prevalence of academic dishonesty in higher education across many disciplines (including the health sciences), and there is evidence linking academic dishonesty in health professional students with future unprofessional behaviour in the workplace. International students are reported to be a particularly vulnerable group. This paper aims to investigate the factors that may be predictive of academic honesty and performance in domestic and international occupational therapy students.

Design/methodology/approach

In total, 701 participants (603 domestic students; 98 international students) were recruited from five Australian universities, and data were collected via a two-part self-report questionnaire. ANOVA and multi-linear regression analyses with bootstrapping were completed.

Findings

Tendency towards cheating and self-perception tendency towards dishonesty in research, gender, age and hours spent in indirect study were found to be statistically significant predictors of academic integrity and performance.

Research limitations/implications

Limitations of this study were the use of convenience sampling and self-report scales which can be prone to social desirability bias. Further studies are recommended to explore other potential predictors of academic honesty and performance in occupational therapy students.

Originality/value

A range of predictors of academic honesty and success were found that will assist educators to target vulnerable domestic and international occupational therapy students as well as address deficiencies in academic integrity through proactive strategies.

Details

Irish Journal of Occupational Therapy, vol. 47 no. 1
Type: Research Article
ISSN: 2398-8819

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

485

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

1 – 10 of 12