Search results

1 – 10 of 238
Article
Publication date: 2 March 2015

Yi Xin, Zijiang Jiang, Wenwen Li, Zonghao Huang and Cheng Wang

This paper aimed to prepare a kind of ZnS nanoparticles/poly(phenylene vinylene) (PPV) nanofibre and investigate its properties. Because the ZnS nanoparticles are important…

Abstract

Purpose

This paper aimed to prepare a kind of ZnS nanoparticles/poly(phenylene vinylene) (PPV) nanofibre and investigate its properties. Because the ZnS nanoparticles are important optoelectronic materials, their incorporation into one-dimensional (1D) nanoscale polymer matrices should be a meaningful subject for electrospinning.

Design/methodology/approach

ZnS/PPV composite nanofibres with an average diameter of 600 nm were successfully prepared by a combination of the in situ method and electrospinning technique. The nanofibres were electrospun from Zn(CH3COO)2·2H2O and PPV precursor composite solution, and the ZnS/PPV fibres were obtained by exposure of the electrospun fibres to H2S gas to prepare ZnS nanoparticles in situ. Such fibres were characterised using X-ray Diffraction (XRD), Fourier transform infrared, transmission electron microscope (TEM), scanning electron microscope and photoluminescence (PL). The photoelectric properties of the fibres obtained were also investigated.

Findings

XRD patterns proved that ZnS nanocrystals generated in the composite nanofibres. The TEM image showed that the nanocrystals were homogeneously dispersed in the nanofibres. The PL spectrum of ZnS/PPV composite nanofibres exhibited a blue shift relative to the PPV nanofibres. I-V curve of the single nanofibre device under 5.76 mW/cm2 light illumination showed that the composite nanofibres have good photoelectric properties.

Research limitations/implications

The comparisons of advantages between ZnS/PPV nanofibres with similar nanofibres will be further expanded in a later research.

Practical implications

Results demonstrate the promise of these novel nanostructures as ultraminiature photodetectors with the potential for integration into future hybrid nanophotonic devices and systems.

Originality/value

The integration of inorganic semiconductor nanoparticles into organic conjugated polymers leads to composite materials with unique physical properties and important application potential. In this work, ZnS nanoparticles were introduced into PPV by an in situ method, so as to obtain a kind of novel 1D nanomaterials with good photoelectric properties.

Details

Pigment & Resin Technology, vol. 44 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 August 2019

G. Yoganjaneyulu, V.V. Ravikumar and C. Sathiya Narayanan

The purpose of this paper is to investigate the strain distribution, stress-based fracture limit and corrosion behaviour of titanium Grade 2 sheets during single point incremental…

Abstract

Purpose

The purpose of this paper is to investigate the strain distribution, stress-based fracture limit and corrosion behaviour of titanium Grade 2 sheets during single point incremental forming (SPIF) process, with various computerized numerical control (CNC) spindle rotational speeds and step depths. The development of corrosion pits in 3.5 (%) NaCl solution has also been studied during the SPIF process.

Design/methodology/approach

A potentiodynamic polarization (PDP) study was performed to investigate the corrosion behaviour of titanium Grade 2 deformed samples, with various spindle rotational speeds in 3.5 (%) NaCl solution. The scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis was carried out to study the fracture behaviour, dislocation densities and corrosion morphology of deformed samples.

Findings

The titanium Grade 2 sheets exhibited better strain distribution, fracture limit and corrosion resistance by increasing the CNC spindle rotational speeds, tool diameters and vertical step depths (VSD). It was recorded that varying the spindle speed affected plastic deformation which in turn affected corrosion rate.

Research limitations/implications

In this study, poor corrosion rate was observed for the as-received condition, and better corrosion rate was achieved at maximum speed of 600 rpm and 0.6 mm of VSD in the deformed sheet. This indicates that corrosion rate improved with increase in the plastic deformation. The EDS analysis report of corroded surface revealed the composition to be mainly of titanium and oxides.

Practical implications

This study discusses the strain distribution, stress-based fracture limit and corrosion behaviour by using titanium Grade 2 sheets during SPIF process.

Social implications

This study is useful in the field of automobile and industrial applications.

Originality/value

With an increase in the spindle rotational speeds and VSD, the titanium Grade 2 sheets showed better strain distribution, fracture limit and corrosion behaviour; the same is evidenced in fracture limit curve and PDP curves.

Article
Publication date: 2 November 2015

Fawzia Fahim Abdel-Mohsen and Hassan Salah Aly Emira

– The purpose of this study was to prepare colour pigments for use as spectrally selective coatings for solar absorbers.

Abstract

Purpose

The purpose of this study was to prepare colour pigments for use as spectrally selective coatings for solar absorbers.

Design/methodology/approach

Nano-particles cobalt and nickel oxides were prepared by sol–gel techniques. These oxides were prepared with its molar ratios and annealed at 200, 400, 600 and 800°C. The structure of the pigments was characterized by infrared spectrometer, differential scanning calorimetry analysis, X-ray diffraction, transmission electron microscope and scanning electron microscope.

Findings

Encapsulated cobalt and nickel oxides were completely formed at 800 and 600°C, and its colour was black and dark green, respectively. The results confirmed that black and green pigments combined selectivity with colour. Optical properties such as absorption and reflection were affected by the firing temperatures on cobalt and nickel oxides–gel polymers. All synthesized pigments consisted of nano-particles.

Research limitations/implications

The prepared samples used in the present work were synthesized from cobalt chloride and nickel acetate. The salts were dispersed in polyacrylamide as a precursor.

Practical implications

The prepared metal oxides had good solar properties.

Originality/value

Colour becomes more important for thermal solar collectors, and it has attracted interest. This might be related to a generally growing attention towards architectural integration of solar energy systems into building. Architects would prefer different colours besides black, even if lower efficiency would have to be accepted.

Article
Publication date: 8 September 2023

Xing Ai, Shuaishuai Wang, Fenghua Luo, Haiqing Pei and Zhenwei Li

The purpose of this study is to describe the mechanism of single-crystal high-temperature creep deformation, predict the creep life more accurately and study the creep…

Abstract

Purpose

The purpose of this study is to describe the mechanism of single-crystal high-temperature creep deformation, predict the creep life more accurately and study the creep constitutive and lifetime models with microstructure evolution.

Design/methodology/approach

The mechanical properties of nickel-based single-crystal superalloy are closely related to the γ' phase. Creep tests under four different temperature and stress conditions were carried out. The relationship between creep temperature, stress and life is fitted by numerical method, and the creep activation energy is obtained. The creep fracture surface, morphology and evolution of strengthening phase (γ') and matrix phase (γ) during different creep periods were observed by scanning electron microscope. With the increase of creep temperature, the rafting time is advanced. The detailed morphology and evolution of dislocations were observed by transmission electron microscope (TEM).

Findings

With the increase of creep temperature, the rafting time is advanced. The detailed morphology and evolution of dislocations were observed by TEM. Dislocations are mainly concentrated in the γ channel phase, especially at high temperature and low stress.

Originality/value

A creep constitutive model based on the evolution of γ' phase size and γ channel width was proposed. Compared with the experimental results, the predicted creep life is within 1.4 times error dispersion band.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 2 August 2019

Maria de Lourdes Miranda-Medina, Christian Tomastik, Tia Truglas, Heiko Groiss and Martin Jech

The purpose of this paper is to provide a general picture for describing the formed tribofilm, including chemical and physical aspects in the micro-scale and the nano-scale. In a…

1188

Abstract

Purpose

The purpose of this paper is to provide a general picture for describing the formed tribofilm, including chemical and physical aspects in the micro-scale and the nano-scale. In a previous study, the durability of zinc dialkyl dithiophosphate (ZDDP) tribofilms on cylinder liner samples has been investigated in a tribometer model system by using fresh and aged fully formulated oils and replacing them with PAO8 without additives. Analyses of the derived tribofilms by means of X-ray photoelectron spectroscopy and scanning electron microscopy could give some hints about the underlying mechanisms of the tribofilm build-up and wear performance, but a final model has not been achieved.

Design/methodology/approach

Thus, characterisation of these tribofilms by means of focused ion beam-transmission electron microscopy (FIB-TEM) and energy dispersive X-ray spectroscopy is presented and a concluding model of the underlying mechanisms of tribofilm build-up is discussed in this paper.

Findings

For tribotests running first with fresh fully formulated engine oil, a rather homogeneous ZDDP-like tribofilm is found underneath a carbon rich tribofilm after changing to non-additivated PAO8. However, when the tests run first with aged fully formulated engine oil, no ZDDP-like tribofilm has been found after changing to non-additivated PAO8, but a wear protective carbon rich tribofilm.

Originality/value

The obtained results provide insights into the structure and durability of tribofilms. Carbon-based tribofilms are built up on the basis of non-additivated PAO8 because of the previously present ZDDP tribofilms, which suggests an alternative way to reducing the consumption of antiwear additives.

Details

Industrial Lubrication and Tribology, vol. 72 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 September 2009

Ruchi Bana and A.K. Banthia

The purpose of this paper is to report the preparation and characterisation of nanocomposites, which are made of biodegradable poly(vinyl‐alcohol‐co‐ethylene) and wood dust. These…

2109

Abstract

Purpose

The purpose of this paper is to report the preparation and characterisation of nanocomposites, which are made of biodegradable poly(vinyl‐alcohol‐co‐ethylene) and wood dust. These nanocomposites can aptly be termed as green by nature as they are totally non‐toxic and ecofriendly.

Design/methodology/approach

Sample films containing 5, 10 and 15 wt% fillers are prepared by conventional solvent casting technique using glass plates as casting surfaces. The dispersion of filler in the polymer matrix is investigated by transmission electron microscope (TEM) analysis. Physical and chemical properties of the films are studied by various characterisation techniques (FTIR, X‐ray diffraction (XRD), TEM and TGA).

Findings

TEM analysis reveals that the average particle size of the nanodispersed filler in the nanocomposite materials is in the range of 12‐25 nm, which shows that a greater extent of matrix penetrated into fibre capillaries of wood dust. These results are supported by the XRD findings also. Wood enhances the thermal stability of the as synthesised nanocomposites.

Research limitations/implications

The mechanical properties of the as synthesised nanocomposites can be improved further by modifying wood dust.

Practical implications

The method developed provides a simple and practical solution to improve the biodegradability, as well as the thermal stability of the composite films.

Originality/value

The nanocomposites so developed can be used in automotive parts like front door liners, boot liners, parcel shelves, headliners, etc. also as mulching films in agriculture.

Details

Pigment & Resin Technology, vol. 38 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 1977

H.G. Birkett and J. Rodney

Information about the properties of paint films can be obtained in a number of ways. Optical properties such as colour, gloss and opacity are readily measured and physical…

Abstract

Information about the properties of paint films can be obtained in a number of ways. Optical properties such as colour, gloss and opacity are readily measured and physical properties such as hardness, permeability and density have been extensively studied. Such measurements, however, tell little about the internal structure of the film and the way in which pigment and other particles are arranged. Such information must be obtained by direct observation.

Details

Pigment & Resin Technology, vol. 6 no. 8
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 15 June 2012

Jiusheng Li, Lifeng Hao, Xiaohong Xu and Tianhui Ren

Sulfurized olefins have been extensively used in many kinds of gear lubricants as EP additives. However, their commercial applications are not totally satisfactory because of the…

Abstract

Purpose

Sulfurized olefins have been extensively used in many kinds of gear lubricants as EP additives. However, their commercial applications are not totally satisfactory because of the pungent, obnoxious odor and corrosion of copper and copper alloys. The purpose of this paper is to investigate the synergistic effects of one type of calcium borate nanoparticles modified by oleic acid (code to CaBN) and sulfurized olefin, in a kind of mineral base oil MVIS 250, in order to find a potential substitute for sulfurized olefins.

Design/methodology/approach

One kind of calcium borate nanoparticle modified by oleic acid (CaBN) was prepared, and its structures were characterized by inductively coupled plasma atomic emission spectroscopy (ICP‐AES), X‐ray power diffraction (XRD) and transmission electron microscope (TEM). The tribological properties of the complex of CaBN with sulfurized olefins (T321) in base oil were evaluated using four‐ball tribotester and compared with CaBN or T321 as individual component. The worn surfaces were investigated by scanning electron microscope (SEM) and X‐ray photoelectron spectroscopy (XPS). In addition, the corrosion‐inhibiting properties of additives were also studied.

Findings

The results of tests show that there are significant synergistic effects on tribological properties between two kinds of additives. Based on the results of SEM and XPS, it can be deduced that a wear resistance film containing B2O3, FeS, FeS2 and CaO was formed on the worn surfaces during the sliding process. Moreover, CaBN and T321 also show excellent synergistic effect on the corrosion‐inhibiting property.

Originality/value

This paper provides a kind of “green” nanoparticle which possesses excellent synergic effect with sulfurized olefins, and gives another selection for industrial applications in which T321 is needed.

Details

Industrial Lubrication and Tribology, vol. 64 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 May 2009

Thomas Hetschel, Klaus‐Jürgen Wolter and Fritz Phillipp

The purpose of this paper is to investigate the oxidation behaviour of an immersion tin final finish after multiple reflow ageing under air and nitrogen atmospheres and to study…

Abstract

Purpose

The purpose of this paper is to investigate the oxidation behaviour of an immersion tin final finish after multiple reflow ageing under air and nitrogen atmospheres and to study their influence on the wetting behaviour with lead‐free solder. To design a model that describes the degradation of wetting behaviour after reflow‐cycling of the immersion tin final finish.

Design/methodology/approach

A special printed circuit boards (PCB) demonstrator was created to investigate the immersion tin final finish with surface analysis methods and wetting tests. The PCB samples were aged by multiple reflow‐cycling under air and nitrogen atmospheres. The tin oxide formation behaviour of immersion tin was characterised using X‐ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM) and SERA analysis.

Findings

The native oxide layer of the investigated immersion tin final finishes was approximately 7 nm on average. The TEM and XPS investigations indicated an amorphous structure of SnO and SnO2. The solder spread test showed significantly different results for PCBs in “as received” condition compared to those after one and two times reflow ageing under a nitrogen solder atmosphere. The analysis methods revealed a slight increase in the tin oxide layer thickness and small areas with semi‐crystalline structure. Reflow ageing under an ambient solder atmosphere induced considerably thicker oxide layers, which could be observed by a yellow discoloration of the surface.

Research limitations/implications

Measures to improve the wetting behaviour can be derived from the described model (i.e. use of higher tin layer thickness or protective films to reduce the tin oxidation).

Originality/value

A functional model for the solderability process of lead‐free solder on immersion tin PCB final finishes was derived and verified. By this, interactions between the state of the final finish and the solder can be described and potential solderability failures can be predicted.

Details

Circuit World, vol. 35 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 June 2013

Fawzia Fahim Abdel‐Mohsen and Hassan Salah Aly Emira

This work aimed to prepare black transition metal oxide pigments to be used as solar absorbers in the solar selective and other industrial paints.

Abstract

Purpose

This work aimed to prepare black transition metal oxide pigments to be used as solar absorbers in the solar selective and other industrial paints.

Design/methodology/approach

Mixed metal oxide CoCuMnOx spinel pigments were synthesised via the sol‐gel route. These oxides, namely (I‐Co0.50Cu0.25Mn0.25)Ox, (II‐Co0.25Cu0.50Mn0.25)Ox and (III‐Co0.25Cu0.25Mn0.50)Ox, were prepared with different molar ratios and annealed at 600, 800 and 900°C, respectively. The prepared oxides were characterised by infrared spectrometer (IS), differential scanning calorimetry analysis (DSC), X‐ray diffraction (XRD) and transmission electron microscope (TEM).

Findings

The prepared pigments have a spinel structure with the composition CoCuMnOx. All synthesised pigments consisted of nano particles ranged from 10 to 80 nm. The optical properties showed high absorption and moderately low reflectance in the solar wavelength range.

Research limitations/implications

The prepared samples, used in the present work, were synthesized from cobalt sulphate, copper chloride and manganese chloride. The salts were dispersed in polyacrylamide as a precursor.

Practical implications

The prepared samples were thermally stable and had good optical properties. They could be used as absorber materials in the painting of solar collectors.

Originality/value

These thermally stable mixed metal oxides could be used in the painting of solar collectors. The three mixed metal oxides could be used as absorber materials for heating solar collectors due to their high absorption and moderately low reflectance in the solar wavelength range.

Details

Pigment & Resin Technology, vol. 42 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 238