Search results

1 – 10 of 419
Article
Publication date: 19 May 2023

Michail Katsigiannis, Minas Pantelidakis and Konstantinos Mykoniatis

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the…

Abstract

Purpose

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the effect of lean manufacturing (LM) techniques on manufacturing facilities and the transition of a mass production (MP) facility to incorporating LM techniques.

Design/methodology/approach

In this paper, the authors apply a hybrid simulation approach to improve an educational automotive assembly line and provide guidelines for implementing different LM techniques. Specifically, the authors describe the design, development, verification and validation of a hybrid discrete-event and agent-based simulation model of a LEGO® car assembly line to analyze, improve and assess the system’s performance. The simulation approach examines the base model (MP) and an alternative scenario (just-in-time [JIT] with Heijunka).

Findings

The hybrid simulation approach effectively models the facility. The alternative simulation scenario (implementing JIT and Heijunka LM techniques) improved all examined performance metrics. In more detail, the system’s lead time was reduced by 47.37%, the throughput increased by 5.99% and the work-in-progress for workstations decreased by up to 56.73%.

Originality/value

This novel hybrid simulation approach provides insight and can be potentially extrapolated to model other manufacturing facilities and evaluate transition scenarios from MP to LM.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Book part
Publication date: 7 February 2024

Clair Reynolds Kueny, Alex Price and Casey Canfield

Barriers to adequate healthcare in rural areas remain a grand challenge for local healthcare systems. In addition to patients' travel burdens, lack of health insurance, and lower…

Abstract

Barriers to adequate healthcare in rural areas remain a grand challenge for local healthcare systems. In addition to patients' travel burdens, lack of health insurance, and lower health literacy, rural healthcare systems also experience significant resource shortages, as well as issues with recruitment and retention of healthcare providers, particularly specialists. These factors combined result in complex change management-focused challenges for rural healthcare systems. Change management initiatives are often resource intensive, and in rural health organizations already strapped for resources, it may be particularly risky to embark on change initiatives. One way to address these change management concerns is by leveraging socio-technical simulation models to estimate techno-economic feasibility (e.g., is it technologically feasible, and is it economical?) as well as socio-utility feasibility (e.g., how will the changes be utilized?). We present a framework for how healthcare systems can integrate modeling and simulation techniques from systems engineering into a change management process. Modeling and simulation are particularly useful for investigating the amount of uncertainty about potential outcomes, guiding decision-making that considers different scenarios, and validating theories to determine if they accurately reflect real-life processes. The results of these simulations can be integrated into critical change management recommendations related to developing readiness for change and addressing resistance to change. As part of our integration, we present a case study showcasing how simulation modeling has been used to determine feasibility and potential resistance to change considerations for implementing a mobile radiation oncology unit. Recommendations and implications are discussed.

Details

Research and Theory to Foster Change in the Face of Grand Health Care Challenges
Type: Book
ISBN: 978-1-83797-655-3

Keywords

Article
Publication date: 13 February 2024

Ionut Nica

This bibliometric mapping study aimed to provide comprehensive insights into the global research landscape of cybernetics. Utilizing the biblioshiny function in R Studio, we…

Abstract

Purpose

This bibliometric mapping study aimed to provide comprehensive insights into the global research landscape of cybernetics. Utilizing the biblioshiny function in R Studio, we conducted an analysis spanning 1958 to 2023, sourcing data from Scopus. This research focuses on key terms such as cybernetics, cybernetics systems, complex adaptive systems, viable system models (VSM), agent-based modeling, feedback loops and complexity systems.

Design/methodology/approach

The analysis leveraged R Studio’s biblioshiny function to perform bibliometric mapping. Keyword searches were conducted within titles, abstracts and keywords, targeting terms central to cybernetics. The timespan, 1958–2023, provides a comprehensive overview of the evolution of cybernetics-related literature. The data were extracted from Scopus to ensure a robust and widely recognized source.

Findings

The results revealed a rich and interconnected global research network in cybernetics. The word cloud analysis highlights prominent terms such as “agent-based modeling,” “complex adaptive systems,” “feedback loop,” “viable system model” and “cybernetics.” Notably, the journal Kybernetes has emerged as a focal point, with significant citations, solidifying its position as a key source within the cybernetics research domain. The bibliometric map provides visual clarity regarding the relationships between various concepts and their evolution over time.

Originality/value

This study contributes original insights by employing advanced bibliometric techniques in R Studio to map the cybernetics research landscape. The comprehensive analysis sheds light on the evolution of key concepts and the global collaborative networks shaping cybernetics research. The identification of influential sources, such as Kybernetes, adds value to researchers seeking to navigate and contribute to the dynamic field of cybernetics. Furthermore, this study highlights that cybernetics not only provides a useful framework for understanding and managing major economic shocks but also offers perspectives for understanding phenomena in various fields such as economics, medicine, environmental sciences and climate change.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 April 2024

Xiaobo Shi, Yaning Qiao, Xinyu Zhao, Yan Liu, Chenchen Liu, Ruopeng Huang and Yuanlong Cui

Modern subway transportation systems need to satisfy increasing safety demands to rapidly evacuate passengers under hazardous emergency circumstances, such as fires, accidents or…

Abstract

Purpose

Modern subway transportation systems need to satisfy increasing safety demands to rapidly evacuate passengers under hazardous emergency circumstances, such as fires, accidents or terrorist attacks, to reduce passenger injuries or life losses. The emergency evacuation capacity (EEC) of a subway station needs to be revised timely, in case passenger demand increases or the evacuation route changes in the future. However, traditional ways of estimating EEC, e.g. fire drills are time- and resource-consuming and are difficult to revise from time to time. The purpose of this study is to establish an intuitive modelling approach to increase the EEC of subway stations in a stepwised manner.

Design/methodology/approach

This study develops an approach to combine agent-based evacuation modelling and building information modelling (BIM) technology to estimate the total evacuation time of a subway station.

Findings

Evacuation time can be saved (33% in the studied case) from iterative improvements including stopping escalators running against the evacuation flow and modifying the geometry around escalator exits. Such iterative improvements rely on integrating agent-based modelling and BIM.

Originality/value

The agent-based model can provide a more realistic simulation of intelligent individual movements under emergency circumstances and provides precise feedback on locations of evacuation bottlenecks. This study also examined the effectiveness of two rounds of stepwise improvements in terms of operation or design to increase the EEC of the station.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 23 March 2022

Navid Hooshangi, Navid Mahdizadeh Gharakhanlou and Seyyed Reza Ghaffari-Razin

The duration of an urban search and rescue (USAR) operation directly depends on the number of rescue teams involved. The purpose of this paper is to simplify the earthquake…

Abstract

Purpose

The duration of an urban search and rescue (USAR) operation directly depends on the number of rescue teams involved. The purpose of this paper is to simplify the earthquake environment and determine the initial number of rescuers in earthquake emergencies in USAR operation.

Design/methodology/approach

In the proposed methodology, four primary steps were considered: evaluation of buildings damage and the number of injured people by exerting geospatial information system (GIS) analyses; determining service time by means of task allocation; designing the simulation model (queuing theory); and calculation of survival rate and comparison with the time of rescue operations.

Findings

The calculation of buildings damage for an earthquake with 6.6 Richter in Tehran’s District One indicated that 18% of buildings are subjected to the high damage risk. The number of injured people calculated was 28,856. According to the calculated survival rate, rescue operations in the region must be completed within 22.33 h to save 75% of the casualties. Finally, the design of the queue model indicated that at least 2,300 rescue teams were required to provide the calculated survival rate.

Originality/value

The originality of this paper is an innovative approach for determining an appropriate number of rescue teams by considering the queuing theory. The results showed that the integration of GIS and the simulation of queuing theory could be a helpful tool in natural disaster management, especially in terms of rapid vulnerability assessment in urban districts, the adequacy and appropriateness of the emergency services.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 1
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 19 March 2024

Claire K. Wan and Mingchang Chih

We argue that a fundamental issue regarding how to search and how to switch between different cognitive modes lies in the decision rules that influence the dynamics of learning…

Abstract

Purpose

We argue that a fundamental issue regarding how to search and how to switch between different cognitive modes lies in the decision rules that influence the dynamics of learning and exploration. We examine the search logics underlying these decision rules and propose conceptual prompts that can be applied mentally or computationally to aid managers’ decision-making.

Design/methodology/approach

By applying Multi-Armed Bandit (MAB) modeling to simulate agents’ interaction with dynamic environments, we compared the patterns and performance of selected MAB algorithms under different configurations of environmental conditions.

Findings

We develop three conceptual prompts. First, the simple heuristic-based exploration strategy works well in conditions of low environmental variability and few alternatives. Second, an exploration strategy that combines simple and de-biasing heuristics is suitable for most dynamic and complex decision environments. Third, the uncertainty-based exploration strategy is more applicable in the condition of high environmental unpredictability as it can more effectively recognize deviated patterns.

Research limitations/implications

This study contributes to emerging research on using algorithms to develop novel concepts and combining heuristics and algorithmic intelligence in strategic decision-making.

Practical implications

This study offers insights that there are different possibilities for exploration strategies for managers to apply conceptually and that the adaptability of cognitive-distant search may be underestimated in turbulent environments.

Originality/value

Drawing on insights from machine learning and cognitive psychology research, we demonstrate the fitness of different exploration strategies in different dynamic environmental configurations by comparing the different search logics that underlie the three MAB algorithms.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 23 February 2024

Anand Prakash and Sudhir Ambekar

This study aims to describe the fundamentals of teaching risk management in a classroom setting, with an emphasis on the learning interface between higher education and the…

Abstract

Purpose

This study aims to describe the fundamentals of teaching risk management in a classroom setting, with an emphasis on the learning interface between higher education and the workplace environment for business management students.

Design/methodology/approach

The study reviews literature that uses spreadsheets to visualize and model risk and uncertainty. Using six distinct case-based activities (CBAs), the study illustrates the practical applications of software like Palisade @RISK in risk management education. It helps to close the gap between theory and practice. The software assists in estimating the likelihood of a risk event and the impact or repercussions it will have if it occurs. This technique of risk analysis makes it possible to identify the risks that need the most active control.

Findings

@RISK can be used to create models that produce results to demonstrate every potential scenario outcome. When faced with a choice or analysis that involves uncertainty, @RISK can be utilized to enhance the perspective of what the future might contain.

Originality/value

The insights from this study can be used to develop critical thinking, independent thinking, problem-solving and other important skills in learners. Further, educators can apply Bloom’s taxonomy and the problem-solving taxonomy to help students make informed decisions in risky situations.

Details

Higher Education, Skills and Work-Based Learning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-3896

Keywords

Article
Publication date: 22 November 2023

Weiwen Mu, Wenbai Chen, Huaidong Zhou, Naijun Liu, Haobin Shi and Jingchen Li

This paper aim to solve the problem of low assembly success rate for 3c assembly lines designed based on classical control algorithms due to inevitable random disturbances and…

Abstract

Purpose

This paper aim to solve the problem of low assembly success rate for 3c assembly lines designed based on classical control algorithms due to inevitable random disturbances and other factors,by incorporating intelligent algorithms into the assembly line, the assembly process can be extended to uncertain assembly scenarios.

Design/methodology/approach

This work proposes a reinforcement learning framework based on digital twins. First, the authors used Unity3D to build a simulation environment that matches the real scene and achieved data synchronization between the real environment and the simulation environment through the robot operating system. Then, the authors trained the reinforcement learning model in the simulation environment. Finally, by creating a digital twin environment, the authors transferred the skill learned from the simulation to the real environment and achieved stable algorithm deployment in real-world scenarios.

Findings

In this work, the authors have completed the transfer of skill-learning algorithms from virtual to real environments by establishing a digital twin environment. On the one hand, the experiment proves the progressiveness of the algorithm and the feasibility of the application of digital twins in reinforcement learning transfer. On the other hand, the experimental results also provide reference for the application of digital twins in 3C assembly scenarios.

Originality/value

In this work, the authors designed a new encoder structure in the simulation environment to encode image information, which improved the model’s perception of the environment. At the same time, the authors used the fixed strategy combined with the reinforcement learning strategy to learn skills, which improved the rate of convergence and stability of skills learning. Finally, the authors transferred the learned skills to the physical platform through digital twin technology and realized the safe operation of the flexible printed circuit assembly task.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

185

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 419