Search results

1 – 10 of 10
Article
Publication date: 13 December 2023

Ying-Jie Guan and Yong-Ping Li

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately…

Abstract

Purpose

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately, this paper aims to propose a four-axis eight-rotor rescue unmanned aerial vehicle (UAV) which can carry a radar life detector. As the design of propeller is the key to the design of UAV, this paper mainly designs the propeller of the UAV at the present stage.

Design/methodology/approach

Based on the actual working conditions of UAVs, this paper preliminarily estimated the load of UAVs and the diameters of propellers and designed the main parameters of propellers according to the leaf element theory and momentum theory. Based on the low Reynolds number airfoil, this paper selected the airfoil with high lift drag ratio from the commonly used low Reynolds number airfoils. The chord length and twist angle of propeller blades were calculated according to the Wilson method and the maximum wind energy utilization coefficient and were optimized by the Asymptotic exponential function. The aerodynamic characteristics of the designed single propeller and coaxial propeller under different installation pitch angles and different installation distances were analyzed.

Findings

The results showed that the design of coaxial twin propellers can increase the load capacity by about 1.5 times without increasing the propeller diameter. When the installation distance between the two propellers was 8 cm and the tilt angle was 15° counterclockwise, the aerodynamic characteristics of the coaxial propeller were optimal.

Originality/value

The novelty of this work came from the conceptual design of the new rescue UAV and its numerical optimization using the Wilson method combined with the maximum wind energy utilization factor and the exponential function. The aerodynamic characteristics of the common shaft propeller were analyzed under different mounting angles and different mounting distances.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 March 2023

Jordi Vila-Pérez, Matteo Giacomini and Antonio Huerta

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using…

Abstract

Purpose

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using numerical benchmarks.

Design/methodology/approach

The work presents a detailed comparison with reference solutions published in the literature –when available– and numerical results computed using a commercial cell-centred finite volume software.

Findings

The FCFV scheme provides first-order accurate approximations of the viscous stress tensor and the heat flux, insensitively to cell distortion or stretching. The strategy demonstrates its efficiency in inviscid and viscous flows, for a wide range of Mach numbers, also in the incompressible limit. In purely inviscid flows, non-oscillatory approximations are obtained in the presence of shock waves. In the incompressible limit, accurate solutions are computed without pressure correction algorithms. The method shows its superior performance for viscous high Mach number flows, achieving physically admissible solutions without carbuncle effect and predictions of quantities of interest with errors below 5%.

Originality/value

The FCFV method accurately evaluates, for a wide range of compressible laminar flows, quantities of engineering interest, such as drag, lift and heat transfer coefficients, on unstructured meshes featuring distorted and highly stretched cells, with an aspect ratio up to ten thousand. The method is suitable to simulate industrial flows on complex geometries, relaxing the requirements on mesh quality introduced by existing finite volume solvers and alleviating the need for time-consuming manual procedures for mesh generation to be performed by specialised technicians.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2023

Mano S. and Nadaraja Pillai S.

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently…

Abstract

Purpose

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently modified to improve the power production through placing number of wind turbines and locations.

Design/methodology/approach

A series of wind tunnel experiments were carried out to evaluate the downstream wake characteristics of the S809 airfoil attached with various EFP (EFP, A = 0.1C, 0.2C and 0.3C) at various angles of attack corresponding to free stream velocity Reynolds number (Re) = 2.11 × 105 and various turbulence intensity (TI = 5%, 7%, 10% and 12%).

Findings

For the S809 wind turbine blade attached with EFP, the downstream velocity ratio decreases with increasing in angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%. The wake intensity for the S809 wind turbine blade and S809 airfoil with 10% of chord EFP performs the same for each downstream location.

Practical implications

Placing the wind turbine in the wind park next to another wind turbine poses a potential challenge for the park power performance. This research addresses the characteristics of the downstream turbulence intensity profile modified with the EFP in the wind turbine blade which improves the downstream characteristics of the turbine in the wind park.

Originality/value

The downstream velocity ratio decreases with increasing angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 June 2023

Marcin Figat and Agnieszka Kwiek

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced…

1625

Abstract

Purpose

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced drag. The purpose of this paper is to determine whether a certain trend in the wingspan impact on aircraft dynamic stability can be identified. The secondary goal was to compare the response to control of flaps placed on a front and rear wing.

Design/methodology/approach

The aerodynamic data and control derivatives were obtained from the computational fluid dynamics computations performed by the MGAERO software. The equations of aircraft longitudinal motion in a state space form were used. The equations were built based on the aerodynamic coefficients, stability and control derivatives. The analysis of the dynamic stability was done in the MATLAB by solving the eigenvalue problem. The response to control was computed by the step response method using MATLAB.

Findings

The results of this study showed that because of a strong aerodynamic coupling, a nonlinear relation between the wing size and aircraft dynamic stability proprieties was observed. In the case of the flap deflection, stronger oscillation was observed for the front flap.

Originality/value

Results of dynamic stability of aircraft in the tandem wing configuration can be found in the literature, but those studies show outcomes of a single configuration, while this paper presents a comprehensive investigation into the impact of wingspan on aircraft dynamic stability. The results reveal that because of a strong aerodynamic coupling, the relation between the span factor and dynamic stability is nonlinear. Also, it has been demonstrated that the configuration of two wings with the same span is not the optimal one from the aerodynamic point of view.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 December 2022

Mohamed Arif Raj Mohamed, Ketu Satish Kumar Reddy and Somaraju Sai Sri Vishnu

The high lift devices are effective at high angle of attack to increase the coefficient of lift by increasing the camber. But it affects the low angle of attack aerodynamic…

Abstract

Purpose

The high lift devices are effective at high angle of attack to increase the coefficient of lift by increasing the camber. But it affects the low angle of attack aerodynamic performance by increasing the drag. Hence, they have made as a movable device to deploy only at high angles of attack, which increases the design and installation complexities. This study aims to focus on the comparison of aerodynamic efficiency of different conventional leading edge (LE) slat configurations with simple fixed bioinspired slat design.

Design/methodology/approach

This research analyzes the effect of LE slat on aerodynamic performance of CLARK Y airfoil at low and high angles of attack. Different geometrical parameters such as slat chord, cutoff, gap, width and depth of LE slat have been considered for the analysis.

Findings

It has been found that the LE slat configuration with slat chord 30% of airfoil chord, forward extension 8% of chord, dip 3% of chord and gap 0.75% of chord gives higher aerodynamic efficiency (Cl/Cd) than other LE slat configurations, but it affects the low angles of attack aerodynamic performance with the deployed condition. Hence, this optimum slat configuration is further modified by closing the gap between LE slat and the main airfoil, which is inspired by the marine mammal’s nose. Thus increases the coefficient of lift at high angles of attack due to better acceleration over the airfoil nose and as well enhances the aerodynamic efficiency at low angles of attack.

Research limitations/implications

The two-dimensional computational analysis has been done for different LE slat’s geometrical parameters at low subsonic speed.

Practical implications

This bio-inspired nose design improves aerodynamic performance and increases the structural strength of aircraft wing compared to the conventional LE slat. This fixed design avoids the complex design and installation difficulties of conventional movable slats.

Social implications

The findings will have significant impact on the fields of aircraft wing and wind turbine designs, which reduces the design and manufacturing complexities.

Originality/value

Different conventional slat configurations have been analyzed and compared with a simple fixed bioinspired slat nose design at low subsonic speed.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 August 2023

Junjie Niu, Weimin Sang, Qilei Guo, Aoxiang Qiu and Dazhi Shi

This paper aims to propose a method of the safety boundary protection for unmanned aerial vehicles (UAVs) in the icing conditions.

63

Abstract

Purpose

This paper aims to propose a method of the safety boundary protection for unmanned aerial vehicles (UAVs) in the icing conditions.

Design/methodology/approach

Forty icing conditions were sampled in the continuous maximum icing conditions in the Appendix C of the Federal Aviation Regulation Part 25. Icing numerical simulations were carried out for the 40 samples and the anti-icing thermal load distribution in full evaporation mode were obtained. Based on the obtained anti-icing thermal load distribution, the surrogated model of the anti-icing thermal load distribution was established with proper orthogonal decomposition and Kriging interpolation. The weather research and forecasting (WRF) model was used for meteorological simulations to obtain the icing meteorological conditions in the target area. With the obtained icing conditions and surrogated model, the anti-icing thermal load distribution in the target area and the variation with time can be determined. According to the energy supply of the UAVs, the graded safety boundaries can be obtained.

Findings

The surrogated model can predict the effects of five factors, such as temperature, velocity, pressure, median volume diameter (MVD) and liquid water content (LWC), on the anti-icing thermal load quickly and accurately. The simulated results of the WRF mode agree well with the observed results. The method can obtain the graded safety boundaries.

Originality/value

The method has a reference significant for the safety of the UAVs with the limited energy supply in the icing conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 March 2023

Shima Yazdani, Erfan Salimipour, Ayoob Salimipour, Mikhail A. Sheremet and Mohammad Ghalambaz

Active flow control on the NACA 0024 airfoil defined as suction-injection jet at the chord-based Reynolds number of 1.5 × 1e + 5 is studied.

Abstract

Purpose

Active flow control on the NACA 0024 airfoil defined as suction-injection jet at the chord-based Reynolds number of 1.5 × 1e + 5 is studied.

Design/methodology/approach

The three-dimensional incompressible unsteady Reynolds-averaged Navier–Stokes equations with the SST k-ω turbulence model are used to study the effects of coflow-jet (CFJ) on the dynamic and static stall phenomena. CFJ implementation is conducted with several momentum coefficients to investigate their turnover. Furthermore, the current work intends to analyze the CFJ performance by varying the Reynolds number and jet momentum coefficient and comparing all states to the baseline airfoil, which has not been studied in prior research investigations.

Findings

It is observed that at the momentum coefficient () of 0.06, the lift coefficients at low attack angles (up to a = 15) dramatically increase. Furthermore, the dynamic stall at the given Reynolds number and with the lowered frequency of 0.15 is explored. In the instance of = 0.07, the lift coefficient curve does not show a noticeable stall feature compared to = 0.05, suggesting that a more powerful stronger jet can entirely control the dynamic stall.

Originality/value

Furthermore, the current work intends to analyze the CFJ performance by varying the jet momentum coefficient and comparing all states to the baseline airfoil, which has not been studied in prior research investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 May 2023

Jiafeng Lu, Xiaolin Deng, Jing Tang and Xiaoyun Chen

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear…

Abstract

Purpose

When processing 11Cr-3Co-3W martensitic heat-resistant steel, the traditional pouring cooling method often appears large cutting force, high cutting temperature, serious tool wear and poor surface quality. This paper aims to use new cooling methods for processing this problem.

Design/methodology/approach

Different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Findings

The results show that with the increase of liquid nitrogen flow, the cutting force decreases, especially the Fx component, which decreases by 10%. When the liquid nitrogen flow reaches 8 L/min, the effect of increasing the liquid nitrogen flow on reducing the cutting force becomes smaller. The cutting force reduced by up to 15%, and the tool life increased up to 20% using liquid nitrogen cryogenic cooling than in cutting liquids cooling. When minimal quantities of lubricant (MQL) was added, the cutting force was reduced by 23%, and the tool life increased by 25%. When the cutting speed increases from 100 m/min to 250 m/min, the cutting force with cutting liquid cooling does not change significantly while the cutting force with liquid nitrogen cooling decreases with the cutting speed increasing. It shows that liquid nitrogen cooling is more suitable for high-speed machining. After the cutting length reaches 66 m, the surface roughness of the workpiece using liquid nitrogen cooling method larger than that of the cutting liquid cooling method. When MQL is added into liquid nitrogen, the lubrication performance is improved, and the surface roughness of the workpiece is reduced about 8%.

Originality/value

Many studies had focused on the improvement of tool life and surface quality by different cooling methods, or on the injection process and chip mechanism. However, there are few relevant studies on the variation of cooling and lubrication properties with the change of cutting length in liquid nitrogen cryogenic processing. In this research, different performance indicators such as cutting force, tool wear and surface quality were measured and analysed under different continuous milling times. The relationship between liquid nitrogen flow and cutting force and surface roughness was analysed and measured.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0053/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 10