Search results

1 – 10 of 467
Article
Publication date: 6 May 2024

Mingze Wang, Yuhe Yang and Yuliang Bai

This paper aims to present a novel adaptive sliding mode control (ASMC) method based on the predefined performance barrier function for reusable launch vehicle under attitude…

Abstract

Purpose

This paper aims to present a novel adaptive sliding mode control (ASMC) method based on the predefined performance barrier function for reusable launch vehicle under attitude constraints and mismatched disturbances.

Design/methodology/approach

A novel ASMC based on barrier function is adopted to deal with matched and mismatched disturbances. The upper bounds of the disturbances are not required to be known in advance. Meanwhile, a predefined performance function (PPF) with prescribed convergence time is used to adjust the boundary of the barrier function. The transient performance, including the overshoot, convergence rate and settling time, as well as the steady-state performance of the attitude tracking error are retained in the predetermined region under the barrier function and PPF. The stability of the proposed control method is analyzed via Lyapunov method.

Findings

In contrast to conventional adaptive back-stepping methods, the proposed method is comparatively simple and effective which does not need to disassemble the control system into multiple first-order systems. The proposed barrier function based on PPF can adjust not only the switching gain in an adaptive way but also the convergence time and steady-state error. And the efficiency of the proposed method is illustrated by conducting numerical simulations.

Originality/value

A novel barrier function based ASMC method is proposed to fit in the amplitude of the mismatched and matched disturbances. The transient and steady-state performance of attitude tracking error can be selected as prior control parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 February 2024

Chengguo Liu, Junyang Li, Zeyu Li and Xiutao Chen

The study aims to equip robots with the ability to precisely maintain interaction forces, which is crucial for tasks such as polishing in highly dynamic environments with unknown…

Abstract

Purpose

The study aims to equip robots with the ability to precisely maintain interaction forces, which is crucial for tasks such as polishing in highly dynamic environments with unknown and varying stiffness and geometry, including those found in airplane wings or thin, soft materials. The purpose of this study is to develop a novel adaptive force-tracking admittance control scheme aimed at achieving a faster response rate with higher tracking accuracy for robot force control.

Design/methodology/approach

In the proposed method, the traditional admittance model is improved by introducing a pre-proportional-derivative controller to accelerate parameter convergence. Subsequently, the authors design an adaptive law based on fuzzy logic systems (FLS) to compensate for uncertainties in the unknown environment. Stability conditions are established for the proposed method through Lyapunov analysis, which ensures the force tracking accuracy and the stability of the coupled system consisting of the robot and the interaction environment. Furthermore, the effectiveness and robustness of the proposed control algorithm are demonstrated by simulation and experiment.

Findings

A variety of unstructured simulations and experimental scenarios are designed to validate the effectiveness of the proposed algorithm in force control. The outcomes demonstrate that this control strategy excels in providing fast response, precise tracking accuracy and robust performance.

Practical implications

In real-world applications spanning industrial, service and medical fields where accurate force control by robots is essential, the proposed method stands out as both practical and straightforward, delivering consistently satisfactory performance across various scenarios.

Originality/value

This research introduces a novel adaptive force-tracking admittance controller based on FLS and validated through both simulations and experiments. The proposed controller demonstrates exceptional performance in force control within environments characterized by unknown and varying.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 April 2024

Yong Wang, Yuting Liu and Fan Xu

Soft robots are known for their excellent safe interaction ability and promising in surgical applications for their lower risks of damaging the surrounding organs when operating…

Abstract

Purpose

Soft robots are known for their excellent safe interaction ability and promising in surgical applications for their lower risks of damaging the surrounding organs when operating than their rigid counterparts. To explore the potential of soft robots in cardiac surgery, this paper aims to propose an adaptive iterative learning controller for tracking the irregular motion of the beating heart.

Design/methodology/approach

In continuous beating heart surgery, providing a relatively stable operating environment for the operator is crucial. It is highly necessary to use position-tracking technology to keep the target and the surgical manipulator as static as possible. To address the position tracking and control challenges associated with dynamic targets, with a focus on tracking the motion of the heart, control design work has been carried out. Considering the lag error introduced by the material properties of the soft surgical robotic arm and system delays, a controller design incorporating iterative learning control with parameter estimation was used for position control. The stability of the controller was analyzed and proven through the construction of a Lyapunov function, taking into account the unique characteristics of the soft robotic system.

Findings

The tracking performance of both the proportional-derivative (PD) position controller and the adaptive iterative learning controller are conducted on the simulated heart platform. The results of these two methods are compared and analyzed. The designed adaptive iterative learning control algorithm for position control at the end effector of the soft robotic system has demonstrated improved control precision and stability compared with traditional PD controllers. It exhibits effective compensation for periodic lag caused by system delays and material characteristics.

Originality/value

Tracking the beating heart, which undergoes quasi-periodic and complex motion with varying accelerations, poses a significant challenge even for rigid mechanical arms that can be precisely controlled and makes tracking targets located at the surface of the heart with the soft robot fraught with considerable difficulties. This paper originally proposes an adaptive interactive learning control algorithm to cope with the dynamic object tracking problem. The algorithm has theoretically proved its convergence and experimentally validated its performance at the cable-driven soft robot test bed.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 18 April 2024

Li Li, Tong Huang, Chujia Pan, J.F. Pan and Wenbin Su

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the…

Abstract

Purpose

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.

Design/methodology/approach

An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.

Findings

The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.

Originality/value

The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 February 2024

Xiaoqing Zhang, Genliang Xiong, Peng Yin, Yanfeng Gao and Yan Feng

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous…

Abstract

Purpose

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous massage path planning and stable interaction control.

Design/methodology/approach

First, back region extraction and acupoint recognition based on deep learning is proposed, which provides a basis for determining the working area and path points of the robot. Second, to realize the standard approach and movement trajectory of the expert massage, 3D reconstruction and path planning of the massage area are performed, and normal vectors are calculated to control the normal orientation of robot-end. Finally, to cope with the soft and hard changes of human tissue state and body movement, an adaptive force tracking control strategy is presented to compensate the uncertainty of environmental position and tissue hardness online.

Findings

Improved network model can accomplish the acupoint recognition task with a large accuracy and integrate the point cloud to generate massage trajectories adapted to the shape of the human body. Experimental results show that the adaptive force tracking control can obtain a relatively smooth force, and the error is basically within ± 0.2 N during the online experiment.

Originality/value

This paper incorporates deep learning, 3D reconstruction and impedance control, the robot can understand the shape features of the massage area and adapt its planning massage path to carry out a stable and safe force tracking control during dynamic robot–human contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 9 April 2024

Nichapa Phraknoi, Mark Stevenson and Meng Jia

The purpose of this study is to define and investigate the governance requirements of supply chain finance (SCF).

Abstract

Purpose

The purpose of this study is to define and investigate the governance requirements of supply chain finance (SCF).

Design/methodology/approach

A qualitative analysis of 849 news articles published in UK newspapers (2000–2022) using the Gioia method.

Findings

SCF governance relies on developing capacities for reflexive scrutiny at two stages: (1) prior to entering into an SCF relationship and (2) during its operation. Based on the notion of SCF as a complex adaptive system, we theorise SCF governance requirements as a dual-layered semipermeable boundary. The semipermeability of the two layers allows for a dynamic exchange between the SCF system and its environment. The first layer is the capacity to selectively enable or control the entry and access of certain actors and practices into the SCF system. The second layer is a capacity for ongoing scrutiny of the SCF operation and its development. Further, we identify five aspects of governance to be enabled, i.e. enhancing adaptability, building confidence, improving efficiency, advancing technology and promoting transparency; and four aspects to be controlled, i.e. preventing abuse of power, curbing fraud risk, constraining operational risk and restricting risky extensions to SCF practices.

Practical implications

Our dynamic framework can guide supply chain (SC) members in making decisions about whether to participate, or continue to operate, in an SCF relationship. Moreover, the findings have implications for policymakers and authorities who oversee entry/access and the involvement of SCF providers, particularly, fintech firms.

Originality/value

The study contributes to both the SC and governance literature by providing a systematic analysis of what SCF governance has to accomplish. Our novel contribution lies in its analysis of SCF governance based on a complex adaptive system approach, which expands the existing literature where SCF is described in rather static terms. More specifically, it suggests a need for a dynamic duality of SCF governance through the semipermeable boundary that selectively enables and controls certain SCF actors and practices.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Access

Year

Last 3 months (467)

Content type

Earlycite article (467)
1 – 10 of 467