Search results

11 – 20 of 638
Article
Publication date: 17 September 2024

Dukun Xu, Yimin Deng and Haibin Duan

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle…

Abstract

Purpose

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle search (BES) algorithm has been improved, and a cost function has been designed to enhance the optimization efficiency of ADRC parameters.

Design/methodology/approach

A six-degree-of-freedom nonlinear model for a fixed-wing UAV has been developed, and its attitude controller has been formulated using the active disturbance rejection control method. The parameters of the disturbance rejection controller have been fine-tuned using the collaborative mutual promotion bald eagle search (CMP-BES) algorithm. The pitch and roll controllers for the UAV have been individually optimized to obtain the most effective controller parameters.

Findings

Inspired by the salp swarm algorithm (SSA), the interaction among individual eagles has been incorporated into the CMP-BES algorithm, thereby enhancing the algorithm's exploration capability. The efficient and accurate optimization ability of the proposed algorithm has been demonstrated through comparative experiments with genetic algorithm, particle swarm optimization, Harris hawks optimization HHO, BES and modified bald eagle search algorithms. The algorithm's capability to solve complex optimization problems has been further proven by testing on the CEC2017 test function suite. A transitional function for fitness calculation has been introduced to accelerate the ability of the algorithm to find the optimal parameters for the ADRC controller. The tuned ADRC controller has been compared with the classical proportional-integral-derivative (PID) controller, with gust disturbances introduced to the UAV body axis. The results have shown that the tuned ADRC controller has faster response times and stronger disturbance rejection capabilities than the PID controller.

Practical implications

The proposed CMP-BES algorithm, combined with a fitness function composed of transition functions, can be used to optimize the ADRC controller parameters for fixed-wing UAVs more quickly and effectively. The tuned ADRC controller has exhibited excellent robustness and disturbance rejection capabilities.

Originality/value

The CMP-BES algorithm and transitional function have been proposed for the parameter optimization of the active disturbance rejection controller for fixed-wing UAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 July 2024

Peng Gao, Xiuqin Su, Zhibin Pan, Maosen Xiao and Wenbo Zhang

This study aims to promote the anti-disturbance and tracking accuracy performance of the servo systems, in which a modified active disturbance rejection control (MADRC) scheme is…

Abstract

Purpose

This study aims to promote the anti-disturbance and tracking accuracy performance of the servo systems, in which a modified active disturbance rejection control (MADRC) scheme is proposed.

Design/methodology/approach

An adaptive radial basis function (ARBF) neural network is utilized to estimate and compensate dominant friction torque disturbance, and a parallel high-gain extended state observer (PHESO) is employed to further compensate residual and other uncertain disturbances. This parallel compensation structure reduces the burden of single ESO and improves the response speed of permanent magnet synchronous motor (PMSM) to hybrid disturbances. Moreover, the sliding mode control (SMC) rate is introduced to design an adaptive update law of ARBF.

Findings

Simulation and experimental results show that as compared to conventional ADRC and SMC algorithms, the position tracking error is only 2.3% and the average estimation error of the total disturbances is only 1.4% in the proposed MADRC algorithm.

Originality/value

The disturbance parallel estimation structure proposed in MADRC algorithm is proved to significantly improve the performance of anti-disturbance and tracking accuracy.

Article
Publication date: 11 February 2019

Muhammad Taimoor, Li Aijun and Rooh ul Amin

The purpose of this paper aims to investigate an effective algorithm for different types of disturbances rejection. New dynamics are designed based on disturbance. Observer-based…

Abstract

Purpose

The purpose of this paper aims to investigate an effective algorithm for different types of disturbances rejection. New dynamics are designed based on disturbance. Observer-based sliding mode control (SMC) technique is used for approximation the disturbances as well as to stabilize the system effectively in presence of uncertainties.

Design/methodology/approach

This research work investigates the disturbances rejection algorithm for fixed-wing unmanned aerial vehicle. An algorithm based on SMC is introduced for disturbances rejection. Two types of disturbances are considered, the constant disturbance and the sinusoidal disturbance. The comprehensive lateral and longitudinal models of the system are presented. Two types of dynamics, the dynamics without disturbance and the new dynamics with disturbance, are presented. An observer-based algorithm is presented for the estimation of the dynamics with disturbances. Intensive simulations and experiments have been performed; the results not only guarantee the robustness and stability of the system but the effectiveness of the proposed algorithm as well.

Findings

In previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated.

Practical implications

As the stability is always important for flight, so the algorithm proposed in this research guarantees the robustness and rejection of disturbances, which plays a vital role in practical life for avoiding any kind of damage.

Originality/value

In the previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated. An observer-based SMC not only approximates the different disturbances and also these disturbances are rejected in order to guarantee the effectiveness and robustness.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 February 2024

Yi Xia, Yonglong Li, Hongbin Zang, Yanpian Mao, Haoran Wang and Jialong Li

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the…

Abstract

Purpose

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the requirements of VBS for small AUVs are analyzed. Second, a modular VBS with high extensibility and easy integration is proposed based on the concepts of generality and interchangeability. Subsequently, a depth-switching controller is proposed based on the modular VBS, which combines the best features of the linear active disturbance rejection controller and the nonlinear active disturbance rejection controller.

Design/methodology/approach

The controller design and endurance of tiny AUVs are challenging because of their low environmental adaptation, limited energy resources and nonlinear dynamics. Traditional and single linear controllers cannot solve these problems efficiently. Although the VBS can improve the endurance of AUVs, the current VBS is not extensible for small AUVs in terms of the differences in individuals and operating environments.

Findings

The switching controller’s performance was examined using simulation with water flow and external disturbances, and the controller’s performance was compared in pool experiments. The results show that switching controllers have greater effectiveness, disturbance rejection capability and robustness even in the face of various disturbances.

Practical implications

A high degree of standardization and integration of VBS significantly enhances the performance of small AUVs. This will help expand the market for small AUV applications.

Originality/value

This solution improves the extensibility of the VBS, making it easier to integrate into different models of small AUVs. The device enhances the endurance and maneuverability of the small AUVs by adjusting buoyancy and center of gravity for low-power hovering and pitch angle control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 May 2023

Changlong Ye, Jingru Shao, Yong Liu and Suyang Yu

Omnidirectional mobile robots with a special type of wheel structure can realize flexible motion with all three degrees of freedom in a plane. But the driving method brings large…

Abstract

Purpose

Omnidirectional mobile robots with a special type of wheel structure can realize flexible motion with all three degrees of freedom in a plane. But the driving method brings large disturbance, which affects motion accuracy and stability. This study aims to improve the motion control accuracy of the omnidirectional mobile platform with MY3 wheels (MY3-OMR), a new fuzzy active disturbance rejection control (FADRC) method with adaptivity is proposed.

Design/methodology/approach

Based on the basic mechanical structure and drive characteristics of MY3-OMR, the dynamics model of the system is established. The linear active disturbance rejection control (LADRC) system is designed to reduce the interference of nonlinear factors in this dynamics model. A fuzzy controller is introduced to realize the online adjustment of the parameters of the LADRC, which further improves the anti-disturbance performance of the system.

Findings

The control method proposed in this paper is compared and analyzed with other methods by simulation and experiment. Results show that the proposed method has better tracking and robustness, which effectively improves the control accuracy of trajectory tracking of MY3-OMR.

Originality/value

A FADRC method with adaptivity is proposed by combining fuzzy control and LADRC. The motion accuracy and anti-interference ability of the MY3-OMR are improved by this control method, which lays a foundation for the subsequent application of MY3-OMR.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2018

Tianyu Ren, Yunfei Dong, Dan Wu and Ken Chen

The purpose of this paper is to present a simple yet effective force control scheme for collaborative robots by addressing the problem of disturbance rejection in joint torque…

Abstract

Purpose

The purpose of this paper is to present a simple yet effective force control scheme for collaborative robots by addressing the problem of disturbance rejection in joint torque: inherent actuator flexibility and nonlinear friction.

Design/methodology/approach

In this paper, a joint torque controller with an extended state observer is used to decouple the joint actuators from the multi-rigid-body system of a constrained robot and compensate the motor friction. Moreover, to realize robot force control, the authors embed this controller into the impedance control framework.

Findings

Results have been given in simulations and experiments in which the proposed joint torque controller with an extended state observer can effectively estimate and compensate the total disturbance. The overall control framework is analytically proved to be stable, and further it is validated in experiments with a robot testbed.

Practical implications

With the proposed robot force controller, the robot is able to change its stiffness in real time and therefore take variable tasks without any accessories, such as the RCC or 6-DOF F/T sensor. In addition, programing by demonstration can be realized easily within the proposed framework, which makes the robot accessible to unprofessional users.

Originality/value

The main contribution of the presented work is the design of a model-free robot force controller with the ability to reject torque disturbances from robot-actuator coupling effect and motor friction, applicable for both constrained and unconstrained environments. Simulation and experiment results from a 7-DOF robot are given to show the effectiveness and robustness of the proposed controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 February 2023

Shengqian Li and Xiaofan Zhang

An active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to…

Abstract

Purpose

An active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to compensate. Subsequently, the uncertain external disturbance is estimated and compensated is used an expansion state observer (ESO) in real time, which can reduce the estimating range of observation for ESO. The purpose of this paper is to suggest a novel method to improve the system tracking performance, as well as the dynamic and static performance index.

Design/methodology/approach

A welding robot is a complicated system with uncertainty, time-varying, strong coupling and a nonlinear system; it is more complex as if it is used in an underwater environment, and it is difficult to establish an accurate dynamic model for an underwater welding robot. Aiming at the tracking control of an underwater welding robot, it is difficult to achieve the control performance requirements by the conventional proportional integral derivative method to realize automatic tracking of the seam.

Findings

The simulation experiment is carried out by MATLAB/Simulink, and the application experiment is recorded. The experimental results show that the control method is correct and effective, and the system’s tracking performance is stable, and the robustness and tracking accuracy of the system are also improved.

Originality/value

The seam gets plumper and smoother, with better continuity and no undercut phenomenon.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 November 2021

Hongjun Shi, Lei Xiong, Xuchen Nie and Qixin Zhu

This paper aims to mainly discuss how to suppress the disturbances accurately and effectively in the wind energy conversion system (WECS) of the direct drive surface mount…

Abstract

Purpose

This paper aims to mainly discuss how to suppress the disturbances accurately and effectively in the wind energy conversion system (WECS) of the direct drive surface mount permanent magnet synchronous generator (SPMSG).

Design/methodology/approach

The disturbances in wind energy conversion system have seriously negative influence on the maximum power tracking performance. Therefore, a model predictive control (MPC) method of model compensation active disturbance rejection control (ADRC) strategy in parallel connection is designed, which optimizes the speed tracking performance compared with the existing control strategy of MPC and ADRC in series connection. Based on the traditional ADRC, a multi parameter model compensation ADRC strategy is added to better estimate the disturbances. At the same time, a torque feedback strategy is added to compensate the disturbances caused by load torque and further optimize the speed loop tracking performance.

Findings

The simulation results show that the designed control method has advantages than the traditional control method in compensating the disturbances and tracking the maximum power more effectively.

Originality/value

The simulation results show that the designed control method is superior to the traditional proportional control method, which can better compensate the internal and external disturbances and track the maximum power more effectively.

Article
Publication date: 23 November 2021

Manlu Liu, Rui Lin, Maotao Yang, Anaid V. Nazarova and Jianwen Huo

The characteristics of spherical robots, such as under-drive, non-holonomic constraints and strong coupling, make it difficult to establish its motion control model accurately. To…

Abstract

Purpose

The characteristics of spherical robots, such as under-drive, non-holonomic constraints and strong coupling, make it difficult to establish its motion control model accurately. To improve the anti-interference performance of spherical robots in practical engineering, this paper proposes a spherical robot motion controller based on auto-disturbance rejection control (ADRC) with parameter tuning.

Design/methodology/approach

This paper considers the influences of the spherical shell, internal frame and pendulum on the movement of the spherical robot during the rotation to establish the multi-body dynamics model of the XK-I spherical robot. Due to the serious coupling problem of the dynamic model, the motion control state equation is constructed using linearization and decoupling. The XK-I spherical robot PSO-ADRC motion controller with parameter tuning function is designed by combining the state equation with the particle swarm optimization (PSO) algorithm. Finally, experiments are performed to evaluate the feasibility of PSO-ADRC in an actual case compared to ADRC, PSO-PID and PID.

Findings

By analyzing the required time to reach the expected value, the control stability and the fluctuation range of the standard deviation after reaching the expected value, the superiority of PSO-ADRC to ADRC, PSO-PID and PID is demonstrated in terms of the speed and anti-interference ability.

Practical implications

The proposed method can be applied to the robot control field.

Originality/value

A parameter-tuning method for auto-disturbance-rejection motion control of the spherical robot is proposed. According to the experimental results, the anti-interference ability of the spherical robot moving on uneven ground is improved. Therefore, it provides a foundation for the autonomous environmental monitoring of the spherical robot equipped with sensors.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 March 2021

Aws Abdulsalam Najm, Ibraheem Kasim Ibraheem, Amjad J. Humaidi and Ahmad Taher Azar

The hybrid control system of the nonlinear PID (NLPID) controller and improved active disturbance rejection control (IADRC) are proposed for stabilization purposes for a 6-degree…

Abstract

Purpose

The hybrid control system of the nonlinear PID (NLPID) controller and improved active disturbance rejection control (IADRC) are proposed for stabilization purposes for a 6-degree freedom (DoF) quadrotor system with the existence of exogenous disturbances and system uncertainties.

Design/methodology/approach

IADRC units are designed for the altitude and attitude systems, while NLPID controllers are designed for the xy position system on the quadrotor nonlinear model. The proposed controlling scheme is implemented using MATLAB/Simulink environment and is compared with the traditional PID controller and NLPID controller.

Findings

Different tests have been done, such as step reference tracking, hovering mode, trajectory tracking, exogenous disturbances and system uncertainties. The simulation results showed the demonstrated performance and stability gained by using the proposed scheme as compared with the other two controllers, even when the system was exposed to different disturbances and uncertainties.

Originality/value

The study proposes an NLPID-IADRC scheme to stabilize the motion of the quadrotor system while tracking a specified trajectory in the presence of exogenous disturbances and parameter uncertainties. The proposed multi-objective Output Performance Index (OPI) was used to obtain the optimum integrated time of the absolute error for each subsystem, UAV quadrotor system energy consumption and for minimizing the chattering phenomenon by adding the integrated time absolute of the control signals.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

11 – 20 of 638