Search results

1 – 8 of 8
Article
Publication date: 7 May 2024

Job Maveke Wambua, Fredrick Madaraka Mwema, Stephen Akinlabi, Martin Birkett, Ben Xu, Wai Lok Woo, Mike Taverne, Ying-Lung Daniel Ho and Esther Akinlabi

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also…

Abstract

Purpose

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure.

Design/methodology/approach

A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures.

Findings

The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells.

Practical implications

The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials.

Originality/value

To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

19

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 February 2024

Mohan Kumar K and Arumaikkannu G

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices…

Abstract

Purpose

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices ranging from bending to stretch-dominated structures using selective laser sintering (SLS).

Design/methodology/approach

Three bending and two stretch-dominated unit cells were selected based on the Maxwell stability criterion. Lattices were designed with three RD and fabricated by SLS technique using PA12 material. Quasi-static compression tests with three strain rates were carried out using Taguchi's L9 experiments. The lattice compressive behaviour was verified with the Gibson–Ashby analytical model.

Findings

It has been observed that RD and strain rates played a vital role in lattice compressive properties by controlling failure mechanisms, resulting in distinct post-yielding responses as fluctuating and stable hardening in the plateau region. Analysis of variance (ANOVA) displayed the significant impact of RD and emphasised dissimilar influences of strain rate that vary to cell topology. Bending-dominated lattices showed better compressive properties than stretch-dominated lattices. The interesting observation is that stretch-dominated lattices with over-stiff topology exhibited less compressive properties contrary to the Maxwell stability criterion, whereas strain rate has less influence on the SEA of face-centered and body-centered cubic unit cells with vertical and horizontal struts (FBCCXYZ).

Practical implications

This comparative study is expected to provide new prospects for designing end-user parts that undergo various impact conditions like automotive bumpers and evolving techniques like hybrid and functionally graded lattices.

Originality/value

To the best of the authors' knowledge, this is the first work that relates the strain rate with compressive properties and also highlights the lattice behaviour transformation from ductile to brittle while the increase of RD and strain rate analytically using the Gibson–Ashby analytical model.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 April 2024

Garima Nema and Karunamurthy K.

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative…

Abstract

Purpose

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative combined condenser unit over traditional individual condenser unit water heating systems.

Design/methodology/approach

The presented innovative new unit of the combined condenser heat pipe works efficiently through its improved idea and unique design, providing uniform heating to improve the heat transfer and, finally, the temperature of water increases without enhancing the cost. In this design, all these five evaporator units were connected with a single combined condenser unit in such a manner that after the condensation of heat transfer fluid vapour, it goes equally into the evaporator pipe.

Findings

The maximum temperature of hot water obtained from the combined condenser heating system was 60.6, 55.5 and 50.3°C at a water flow rate of 0.001, 0.002 and 0.003 kg/s, respectively. The first and second law thermodynamic efficiency of the combined condenser heating system were 55.4%, 60.5% and 89.0% and 2.6%, 3.7% and 4.1% at 0.001, 0.002 and 0.003 kg/s of water flow rates, respectively. The combined condenser heat pipe solar evacuated tube heating system promoting progressive performance is considered efficient and environment-friendly compared to the traditional condenser unit water heating system.

Originality/value

Innovative combined condenser heat pipe evacuated tube collector assembly was designed and developed for the study. A comparative theoretical and experimental energy-exergy performance analysis was performed of innovated collective condenser and traditional individual condenser heat pipe water heating system at various mass flow rate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

39

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 April 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased…

Abstract

Purpose

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased in recent years due to its applications to surface treatment and disinfection. In this context, there is a significant need for versatile power generators able to generate a wide range of output voltage/current ranging from direct current (DC) to tens of kHz in the range of kVs. The purpose of this paper is to develop a highly versatile power converter for plasma generation based on a multilevel topology.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The followed methodology includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and test laboratory tests after building an eight-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 10 kVpp output voltage and 10 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced studies in plasma generation. Unlike previous proposals, the proposed converter features bidirectional operation, allowing to test complex reactive loads. Besides, complex waveforms can be generated, allowing testing complex patterns for optimized cold-plasma generation methods. Besides, unlike transformer- or resonant-network-based approaches, the proposed generator features very low output impedance regardless the operating point, exhibiting improved and reliable performance for different operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2022

Naveenkumar R., Shanmugam S. and Veerappan AR

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…

Abstract

Purpose

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).

Design/methodology/approach

Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.

Findings

Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.

Originality/value

Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 8 of 8