Search results

11 – 20 of over 19000
Article
Publication date: 16 December 2021

Le Dian Zheng, Yi Yang, Guang Lin Qiang and Zhengqi Gu

This paper aims to propose a precise turbulence model for automobile aerodynamics simulation, which can predict flow separation and reattachment phenomena more accurately.

Abstract

Purpose

This paper aims to propose a precise turbulence model for automobile aerodynamics simulation, which can predict flow separation and reattachment phenomena more accurately.

Design/methodology/approach

As the results of wake flow simulation with commonly used turbulence models are unsatisfactory, by introducing a nonlinear Reynolds stress term and combining the detached Eddy simulation (DES) model, this paper proposes a nonlinear-low-Reynolds number (LRN)/DES turbulence model. The turbulence model is verified in a backward-facing step case and applied in the flow field analysis of the Ahmed model. Several widely applied turbulence models are compared with the nonlinear-LRN/DES model and the experimental data of the above cases.

Findings

Compared with the experimental data and several turbulence models, the nonlinear-LRN/DES model gives better agreement with the experiment and can predict the automobile wake flow structures and aerodynamic characteristics more accurately.

Research limitations/implications

The nonlinear-LRN/DES model proposed in this paper suffers from separation delays when simulating the separation flows above the rear slant of the Ahmed body. Therefore, more factors need to be considered to further improve the accuracy of the model.

Practical implications

This paper proposes a turbulence model that can more accurately simulate the wake flow field structure of automobiles, which is valuable for improving the calculation accuracy of the aerodynamic characteristics of automobiles.

Originality/value

Based on the nonlinear eddy viscosity method and the scale resolved simulation, a nonlinear-LRN/DES turbulence model including the nonlinear Reynolds stress terms for separation and reattachment prediction, as well as the wake vortex structure prediction is first proposed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 May 2024

Ahmed Taibi, Said Touati, Lyes Aomar and Nabil Ikhlef

Bearings play a critical role in the reliable operation of induction machines, and their failure can lead to significant operational challenges and downtime. Detecting and…

Abstract

Purpose

Bearings play a critical role in the reliable operation of induction machines, and their failure can lead to significant operational challenges and downtime. Detecting and diagnosing these defects is imperative to ensure the longevity of induction machines and preventing costly downtime. The purpose of this paper is to develop a novel approach for diagnosis of bearing faults in induction machine.

Design/methodology/approach

To identify the different fault states of the bearing with accurately and efficiently in this paper, the original bearing vibration signal is first decomposed into several intrinsic mode functions (IMFs) using variational mode decomposition (VMD). The IMFs that contain more noise information are selected using the Pearson correlation coefficient. Subsequently, discrete wavelet transform (DWT) is used to filter the noisy IMFs. Second, the composite multiscale weighted permutation entropy (CMWPE) of each component is calculated to form the features vector. Finally, the features vector is reduced using the locality-sensitive discriminant analysis algorithm, to be fed into the support vector machine model for training and classification.

Findings

The obtained results showed the ability of the VMD_DWT algorithm to reduce the noise of raw vibration signals. It also demonstrated that the proposed method can effectively extract different fault features from vibration signals.

Originality/value

This study suggested a new VMD_DWT method to reduce the noise of the bearing vibration signal. The proposed approach for bearing fault diagnosis of induction machine based on VMD-DWT and CMWPE is highly effective. Its effectiveness has been verified using experimental data.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2023

Jianbin Luo, Yuanhao Tie, Ke Mi, Yajuan Pan, Lifei Tang, Yuan Li, Hongxiang Xu, Zhonghang Liu, Mingsen Li and Chunmei Jiang

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the…

Abstract

Purpose

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the response surface optimization method. This study has extraordinary implications for the planning of future intelligent transportation.

Design/methodology/approach

First, the single vehicle and vehicle platoon models are validated. Second, the configuration with the lowest average drag coefficient under the two conditions is obtained by response surface optimization. At the same time, the aerodynamic characteristics of the mixed platoon driving under different conditions are also analyzed.

Findings

The configuration with the lowest average drag coefficient under no crosswind conditions is 0.3 L for longitudinal spacing and 0.8 W for lateral spacing, with an average drag coefficient of 0.1931. The configuration with the lowest average drag coefficient under crosswind conditions is 10° for yaw angle, 0.25 L for longitudinal spacing, and 0.8 W for lateral spacing, with an average drag coefficient of 0.2251. Compared to the single vehicle, the average drag coefficients for the two conditions are reduced by 25.1% and 41.3%, respectively.

Originality/value

This paper investigates the lowest average drag coefficient for mixed platoon driving under no crosswind and crosswind conditions using a response surface optimization method. The computational fluid dynamics (CFD) results of single vehicle and vehicle platoon are compared and verified with the experimental results to ensure the reliability of this study. The research results provide theoretical reference and guidance for the planning of intelligent transportation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 10 June 2014

Abstract

Details

Practical and Theoretical Implications of Successfully Doing Difference in Organizations
Type: Book
ISBN: 978-1-78350-678-1

Article
Publication date: 19 January 2022

E. S. Aly, M. M. El-Dessoky, M. T. Yassen, E. Saleh, M. A. Aiyashi and Ahmed Hussein Msmali

The purpose of the study is to obtain explicit formulas to determine the stability of periodic solutions to the new system and study the extent of the stability of those periodic…

99

Abstract

Purpose

The purpose of the study is to obtain explicit formulas to determine the stability of periodic solutions to the new system and study the extent of the stability of those periodic solutions and the direction of bifurcated periodic solutions. More than that, the authors did a numerical simulation to confirm the results that the authors obtained and presented through numerical analysis are the periodic and stable solutions and when the system returns again to the state of out of control.

Design/methodology/approach

The authors studied local bifurcation and verified its occurrence after choosing the delay as a parameter of control in Zhou 2019’s dynamical system with delayed feedback control. The authors investigated the normal form theory and the center manifold theorem.

Findings

The occurrence of local Hopf bifurcations at the Zhou's system is verified. By using the normal form theory and the center manifold theorem, the authors obtain the explicit formulas for determining the stability and direction of bifurcated periodic solutions. The theoretical results obtained and the corresponding numerical simulations showed that the chaos phenomenon in the Zhou's system can be controlled using a method of time-delay auto-synchronization.

Originality/value

As the delay increases further, the numerical simulations show that the periodic solution disappears, and the chaos attractor appears again. The obtained results can also be applied to the control and anti-control of chaos phenomena of system (1). There are still abundant and complex dynamical behaviors, and the topological structure of the new system should be completely and thoroughly investigated and exploited.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 February 2020

Mohamad Amin Kaviani, Alireza Peykam, Sharfuddin Ahmed Khan, Nadjib Brahimi and Raziyeh Niknam

The purpose of this paper is to develop a combined intuitionistic fuzzy analytic hierarchy process (IFAHP) and fuzzy multi-objective optimization approach to select suppliers and…

Abstract

Purpose

The purpose of this paper is to develop a combined intuitionistic fuzzy analytic hierarchy process (IFAHP) and fuzzy multi-objective optimization approach to select suppliers and allocate the orders to them in the bottled water production context.

Design/methodology/approach

First, the primary weights of criteria associated with the supplier selection problem are calculated using the IFAHP technique. Then a fuzzy multi-objective optimization model is developed to allocate the appropriate amount of orders to each supplier.

Findings

The proposed methodology has been successfully implemented in the case of an Iranian food company in its bottled water factory. Results demonstrate our model is capable of practically handling the uncertainty in DMs’ preference that leads to effective and efficient supplier selection and order allocation decisions.

Originality/value

The authors develop a novel hybrid decision-making tool to tackle the uncertainty in decision-makers’ opinions with a demonstrated applicability and some promising outcomes in efficiently allocating the order quantity to suppliers in the area of bottled water production.

Details

Journal of Modelling in Management, vol. 15 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 19 August 2020

Ahmed Berkane and Abdallah Bradji

We consider, as discretization in space, the nonconforming mesh developed in SUSHI (Scheme Using Stabilization and Hybrid Interfaces) developed in Eymard et al. (2010) for a

Abstract

We consider, as discretization in space, the nonconforming mesh developed in SUSHI (Scheme Using Stabilization and Hybrid Interfaces) developed in Eymard et al. (2010) for a semi-linear heat equation. The time discretization is performed using a uniform mesh. We are concerned with a nonlinear scheme that has been studied in Bradji (2016) in the context of the general framework GDM (Gradient Discretization Method) (Droniou et al., 2018) which includes SUSHI. We provide sufficient conditions on the size of the spatial mesh and the time step which allow to prove a W1,(L2)-error estimate. This error estimate can be viewed as an improvement for the W1,2(L2)-error estimate proved in Bradji (2016). The W1,(L2)-error estimate we want to prove in this note was stated without proof in Bradji (2016, Remark 7.2, Page 1302). Its proof is based on a comparison with an appropriately chosen auxiliary finite volume scheme along with the derivation of some new estimates on its solution.

Details

Arab Journal of Mathematical Sciences, vol. 27 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 8 May 2018

Stephie Edwige, Yoann Eulalie, Philippe Gilotte and Iraj Mortazavi

The purpose of this paper is to present numerical investigations of the flow dynamic characteristics of a 47° Ahmed Body to identify wake flow control strategy leading to drag…

Abstract

Purpose

The purpose of this paper is to present numerical investigations of the flow dynamic characteristics of a 47° Ahmed Body to identify wake flow control strategy leading to drag coefficient reduction, which could be tested later on sport utility vehicles.

Design/methodology/approach

This study begins with a mean flow topology description owing to dynamic and spectral analysis of the aerodynamic tensor. Then, the sparse promoting dynamic modal decomposition method is discussed and compared to other modal approaches. This method is then applied on the wall and wake pressure to determine frequencies of the highest energy pressure modes and their transfers to other frequency modes. This analysis is then used to design appropriated feedback flow control strategies.

Findings

This dynamic modal decomposition highlights a reduced number of modes at low frequency which drive the flow dynamics. The authors especially notice that the pressure mode at a Strouhal number of 0.22, based on the width between feet, induces aerodynamic losses close to the rear end. Strategy of the proposed control loop enables to dampen the energy of this mode, but it has been transferred to lower frequency mode outside of the selected region of interest.

Originality/value

This analysis and methodology of feedback control shows potential drag reduction with appropriated modal energy transfer management.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 October 2015

Hichem Khlif and Keryn Chalmers

This study reviews the use of meta-analysis in accounting research. We categorize the meta-analytic research into five topics: financial reporting, auditing, corporate governance…

Abstract

This study reviews the use of meta-analysis in accounting research. We categorize the meta-analytic research into five topics: financial reporting, auditing, corporate governance and accounting quality, management accounting, and miscellaneous topics. Further, we classify the studies by the meta-analysis technique employed: Hunter et al. (1982), Hunter and Schmidt (2000), Lipsey and Wilson (2001), and Stouffer’s approach. We identify 27 meta-analytical studies over the period 1985–2014 with financial reporting (auditing) topics representing seven (six) of these studies. Our review highlights that meta-analytic methods are being applied and accepted, more frequently, to answer complex questions concerning the moderating effects of country-level variables, such as national culture, economic conditions, and institutional characteristics, on various associations of interest.

Details

Journal of Accounting Literature, vol. 35 no. 1
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 13 February 2024

Muhammad Nabeel Siddiqui, Xiaolu Zhu, Hanad Rasool, Muhammad Bilal Afzal and Nigar Ahmed

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to…

Abstract

Purpose

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to achieve trajectory tracking of quadrotor in the Cartesian plane.

Design/methodology/approach

To achieve trajectory tracking control, firstly the decoupled rotational and translational model of quadrotor are modified by introducing backstepped state-space variables. In the second step, robust integral sliding mode control is designed based on the proportional-integral-derivative (PID) technique. In the third step, a DO is constructed. In next step, the measurable outputs, i.e. rotational and translational state variables, are used to design the LPO. Finally, in the control algorithm all state variables and its rates are replaced with its estimates obtained using the state-observer.

Findings

The finding includes output-feedback control (OFC) algorithm designed by using a LPO. A modified backstepping model for rotational and rotational systems is developed prior to the design of integral sliding mode control based on PID technique. Unlike traditional high-gain observers (HGO), this paper used the LPO for state estimation of quadrotor systems to solve the problem of peaking phenomenon in HGO. Furthermore, a nonlinear DO is designed such that it attenuates disturbance with unknown magnitude and frequency. Moreover, a chattering reduction criterion has been introduced to solve the inherited chattering issue of controllers based on sliding mode technique.

Practical implications

This paper presents input and output data-driven model-free control algorithm. That is, only input and output of the quadrotor model are required to achieve the trajectory tracking control. Therefore, for practical implementation, the number of on-board sensor is reduced.

Originality/value

Although extensive research has been done for designing OFC algorithms for quadrotor, LPO has never been implemented for the rotational and translational state estimations of quadrotor. Furthermore, the mathematical model of rotational and translational systems is modified by using backstepped variables followed by the controller designed using PID and integral sliding mode control technique. Moreover, a DO is developed for attenuation of disturbance with unknown bound, magnitude and frequency.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

11 – 20 of over 19000