Search results

1 – 10 of 141
Article
Publication date: 20 February 2024

Yuran Jin, Xiaolin Zhu, Xiaoxu Zhang, Hui Wang and Xiaoqin Liu

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital…

Abstract

Purpose

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital transformation challenges brought by 3D printing. Since the business model is a competitive weapon for modern enterprises, there is a research gap between business model innovation and digital transformation challenges for 3D-printing garment enterprises. The aim of the paper is to innovate a new business model for 3D-printing garment enterprises in digital transformation.

Design/methodology/approach

A business model innovation canvas (BMIC), a new method for business model innovation, is used to innovate a new 3D-printing clothing enterprises business model in the context of digital transformation. The business model canvas (BMC) method is adopted to illustrate the new business model. The business model ecosystem is used to design the operating architecture and mechanism of the new business model.

Findings

First, 3D-printing clothing enterprises are facing digital transformation, and they urgently need to innovate new business models. Second, mass customization and distributed manufacturing are important ways of solving the business model problems faced by 3D-printing clothing enterprises in the process of digital transformation. Third, BMIC has proven to be an effective tool for business model innovation.

Research limitations/implications

The new mass deep customization-distributed manufacturing (MDC-DM) business model is universal. As such, it can provide an important theoretical reference for other scholars to study similar problems. The digital transformation background is taken into account in the process of business model innovation. Therefore, this is the first hybrid research that has been focused on 3D printing, garment enterprises, digital transformation and business model innovation. On the other hand, business model innovation is a type of exploratory research, which means that the MDC-DM business model’s application effect cannot be immediately observed and requires further verification in the future.

Practical implications

The new business model MDC-DM is not only applicable to 3D-printing garment enterprises but also to some other enterprises that are either using or will use 3D printing to enhance their core competitiveness.

Originality/value

A new business model, MDC-DM, is created through BMIC, which allows 3D-printing garment enterprises to meet the challenges of digital transformation. In addition, the original canvas of the MDC-DM business model is designed using BMC. Moreover, the ecosystem of the MDC-DM business model is constructed, and its operation mechanisms are comprehensively designed.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 30 April 2024

Kristijan Breznik, Naraphorn Paoprasert, Klara Novak and Sasitorn Srisawadi

This study aims to identify research trends and technological evolution in the polymer three-dimensional (3D) printing process that can effectively identify the direction of…

Abstract

Purpose

This study aims to identify research trends and technological evolution in the polymer three-dimensional (3D) printing process that can effectively identify the direction of technological advancement and progress of acceptance in both society and key manufacturing industries.

Design/methodology/approach

The Scopus database was used to collect data on polymer 3D printing papers. This study uses bibliometric approach along with network analytic techniques to identify and discuss the most important countries and their scientific collaboration, compares income groups and analyses keyword trends.

Findings

It was found that top research production results from heavy investments in research and development. The USA has the highest number of papers among the high-income countries. However, scientific production in the other two income groups is strongly dominated by China and India. Keyword analysis shows that countries with lower incomes in certain areas, such as composite and bioprinting, have fallen behind other groups over time. International collaborations were suggested as mechanisms for those countries to catch up with the current research trends. The evolution of the research field, which started with a focus on 3D printing processes and shifted to printed part designs and their applications, was discussed. The advancement of the research topic suggests that translational research on polymer 3D printing has been led mainly by research production from higher-income countries and countries with large research and development investments.

Originality/value

Previous studies have conducted performance analysis, science mapping and network analysis in the field of 3D printing, but none have focused on global research trends classified by country income. This study has conducted a bibliometric analysis and compared the outputs according to various income levels according to the World Bank classification.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 May 2024

Tudor George Alexandru, Diana Popescu, Stochioiu Constantin and Florin Baciu

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand…

Abstract

Purpose

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand orthoses. These orthoses were 3D printed flat, heated and molded to fit the patient’s hand. The advantages of such an approach include reduced production time and cost.

Design/methodology/approach

The study used both experimental and numerical methods to analyze the thermoforming process of PLA parts. Thermal and mechanical characteristics were determined at different temperatures and infill densities. An equivalent material model that considers infill within a print is proposed. Its practical use was proven using a coupled finite-element analysis model. The simulation strategy enabled a comparative analysis of the thermoforming behavior of orthoses with two designs by considering the combined impact of natural convection cooling and imposed structural loads.

Findings

The experimental results indicated that at 27°C and 35°C, the tensile specimens exhibited brittle failure irrespective of the infill density, whereas ductile behavior was observed at 45°C, 50°C and 55°C. The thermal conductivity of the material was found to be linearly related to the temperature of the specimen. Orthoses with circular open pockets required more time to complete the thermoforming process than those with hexagonal pockets. Hexagonal cutouts have a lower peak stress owing to the reduced reaction forces, resulting in a smoother thermoforming process.

Originality/value

This study contributes to the existing literature by specifically focusing on the thermoforming process of 3D-printed parts made from PLA. Experimental tests were conducted to gather thermal and mechanical data on specimens with two infill densities, and a finite-element model was developed to address the thermoforming process. These findings were applied to a comparative analysis of 3D-printed thermoformed wrist-hand orthoses that included open pockets with different designs, demonstrating the practical implications of this study’s outcomes.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 April 2024

Pınar Şenel, Hacer Turhan and Erkan Sezgin

Three-dimentional (3D) food printers are innovative technologies that contribute to healthy, personalized and stainable nutrition. However, many consumers are still vigilant about…

Abstract

Purpose

Three-dimentional (3D) food printers are innovative technologies that contribute to healthy, personalized and stainable nutrition. However, many consumers are still vigilant about 3D printed food in the age of technology. The purpose of this study is to develop a scale and propose a model for consumption preferences associated with 3D-printed food (3DPF).

Design/methodology/approach

The developed questionnaire was handed to 192 Z and Y generation participants (Data1) for the exploratory factor analysis stage initially. Then, the questionnaire was handed to another group of 165 participants (Data 2) for verification by confirmatory factor analysis. Finally, the dimensions “healthy and personalized nutrition,” “sustainable nutrition” and “socio-cultural nutrition” were analyzed by structural equation modeling.

Findings

The results indicated that there was a high relationship between “healthy and personalized nutrition” and “sustainable nutrition” as well as between “sustainable nutrition” and “socio-cultural nutrition” when 3DPF was considered.

Originality/value

The study would contribute to the new survey area related to 3DPF by presenting a scale and proposing a model. Also, the study reveals which nutritional factors affect the Z and Y generation’s consumption of 3DPF. In this context, the study aims to make marketing contributions to the food production, restaurant and hotel sectors.

研究目的

3D食品打印机是创新技术, 有助于健康、个性化和可持续的营养。然而, 在科技时代, 许多消费者仍然对3D打印食品保持警惕。本研究的目的是开发一个刻画与3D打印食品相关的消费偏好的量表并提出一个模型。

研究方法

本研究首先将开发的问卷交给192名Z和Y世代参与者(数据1)进行探索性因素分析阶段。然后, 将问卷交给另一组165名参与者(数据2)通过验证性因素分析进行验证。最后, 通过结构方程模型分析了“健康和个性化营养”、“可持续营养”和“社会文化营养”这三个维度。

研究发现

结果表明, 在考虑3D打印食品时, “健康和个性化营养”与“可持续营养”之间以及“可持续营养”与“社会文化营养”之间存在很高的关系。

研究创新

本研究通过提出一个量表并提出一个模型, 为与3D打印食品相关的新调查领域做出了贡献。此外, 研究揭示了影响Z和Y世代对3D打印食品消费的营养因素。在这一背景下, 本研究旨在为食品生产、餐厅和酒店等领域做出营销贡献。

Details

Journal of Hospitality and Tourism Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9880

Keywords

Open Access
Article
Publication date: 14 March 2024

Chongjun Wu, Yutian Chen, Xinyi Wei, Junhao Xu and Dongliu Li

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is…

Abstract

Purpose

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is mainly focused on analyzing the forming mechanism of equipment and factors affecting the forming quality and accuracy, investigating the influence of forming process parameters on the printing quality and optimization of the printing quality. This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Design/methodology/approach

The µ-SLA process is optimized based on the variable cross-section micro-cone structure printing. Multi-index analysis method was used to analyze the influence of process parameters. The process parameter influencing order is determined and validated with flawless micro array structure.

Findings

After the optimization analysis of the top diameter size, the bottom diameter size and the overall height, the influence order of the printing process parameters on the quality of the micro-cone forming is: exposure time (B), print layer thickness (A) and number of vibrations (C). The optimal scheme is A1B3C1, that is, the layer thickness of 5 µm, the exposure time of 3000 ms and the vibration of 64x. At this time, the cone structure with the bottom diameter of 50 µm and the cone angle of 5° could obtain a better surface structure.

Originality/value

This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 May 2024

Ali Hashemi Baghi and Jasmin Mansour

Fused Filament Fabrication (FFF) is one of the growing technologies in additive manufacturing, that can be used in a number of applications. In this method, process parameters can…

Abstract

Purpose

Fused Filament Fabrication (FFF) is one of the growing technologies in additive manufacturing, that can be used in a number of applications. In this method, process parameters can be customized and their simultaneous variation has conflicting impacts on various properties of printed parts such as dimensional accuracy (DA) and surface finish. These properties could be improved by optimizing the values of these parameters.

Design/methodology/approach

In this paper, four process parameters, namely, print speed, build orientation, raster width, and layer height which are referred to as “input variables” were investigated. The conflicting influence of their simultaneous variations on the DA of printed parts was investigated and predicated. To achieve this goal, a hybrid Genetic Algorithm – Artificial Neural Network (GA-ANN) model, was developed in C#.net, and three geometries, namely, U-shape, cube and cylinder were selected. To investigate the DA of printed parts, samples were printed with a central through hole. Design of Experiments (DoE), specifically the Rotational Central Composite Design method was adopted to establish the number of parts to be printed (30 for each selected geometry) and also the value of each input process parameter. The dimensions of printed parts were accurately measured by a shadowgraph and were used as an input data set for the training phase of the developed ANN to predict the behavior of process parameters. Then the predicted values were used as input to the Desirability Function tool which resulted in a mathematical model that optimizes the input process variables for selected geometries. The mean square error of 0.0528 was achieved, which is indicative of the accuracy of the developed model.

Findings

The results showed that print speed is the most dominant input variable compared to others, and by increasing its value, considerable variations resulted in DA. The inaccuracy increased, especially with parts of circular cross section. In addition, if there is no need to print parts in vertical position, the build orientation should be set at 0° to achieve the highest DA. Finally, optimized values of raster width and layer height improved the DA especially when the print speed was set at a high value.

Originality/value

By using ANN, it is possible to investigate the impact of simultaneous variations of FFF machines’ input process parameters on the DA of printed parts. By their optimization, parts of highly accurate dimensions could be printed. These findings will be of significant value to those industries that need to produce parts of high DA on FFF machines.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2024

Ying-Hsun Lai, Yu-Shan Lin, Yao-Chung Chang and Shih-Yeh Chen

Education for sustainable development (ESD) is a developing educational concept that aims to achieve economic, social and environmental sustainability through education. Cultural…

Abstract

Purpose

Education for sustainable development (ESD) is a developing educational concept that aims to achieve economic, social and environmental sustainability through education. Cultural sustainability education aims to cultivate awareness and protection of cultural assets, promote sustainable development and foster environmental responsibility. This study establishes a cyber-physical metaverse of cultural sustainability learning to cultivate students' motivation, multicultural identity, critical thinking and sustainability thinking.

Design/methodology/approach

In this study, virtual reality (VR) and 3D printing technologies were utilized to create a cyber-physical metaverse learning environment. This learning environment is designed to allow elementary school children to learn about indigenous cultures and the architecture of slate houses, as well as socio-architectural issues. Learners will be able to experience first-hand the plight of the indigenous tribal areas and the exploration of related cultural knowledge.

Findings

The study collected pre- and post-test data through questionnaires, using covariates to analyze learners' perceptions of learning. The results of this study showed that cyber-physical metaverse learning environment had a significant impact on learning motivation, multicultural identity and sustainability thinking for culturally sustainable education. However, this study’s impact on critical thinking skills in students remains to be confirmed.

Research limitations/implications

This is a quasi-experimental study of a single country’s elementary school children in the indigenous area, so its findings cannot be extrapolated to other areas or to learners of different ages.

Originality/value

This study introduces a framework for incorporating both virtual and real cultures to promote sustainable learning. The cyber-physical metaverse learning is used to supplement teaching activities to enhance learners' motivation in learning multicultural knowledge. Students were able to recognize and protect cultural assets, as well as emphasize the importance of sustainable development.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Open Access
Article
Publication date: 9 April 2024

Patrice Silver, Juliann Dupuis, Rachel E. Durham, Ryan Schaaf, Lisa Pallett and Lauren Watson

In 2022, the Baltimore professional development school (PDS) partner schools, John Ruhruh Elementary/Middle School (JREMS) and Notre Dame of Maryland University (NDMU) received…

Abstract

Purpose

In 2022, the Baltimore professional development school (PDS) partner schools, John Ruhruh Elementary/Middle School (JREMS) and Notre Dame of Maryland University (NDMU) received funds through a Maryland Educational Emergency Revitalization (MEER) grant to determine (a) to what extent additional resources and professional development would increase JREMS teachers’ efficacy in technology integration and (b) to what extent NDMU professional development in the form of workshops and self-paced computer science modules would result in greater use of technology in the JREMS K-8 classrooms. Results indicated a statistically significant improvement in both teacher comfort with technology and integrated use of technology in instruction.

Design/methodology/approach

Survey data were collected on teacher-stated comfort with technology before and after grant implementation. Teachers’ use of technology was also measured by unannounced classroom visits by administration before and after the grant implementation and through artifacts teachers submitted during NDMU professional development modules.

Findings

Results showing significant increases in self-efficacy with technology along with teacher integration of technology exemplify the benefits of a PDS partnership.

Originality/value

This initiative was original in its approach to teacher development by replacing required teacher professional development with an invitation to participate and an incentive for participation (a personal MacBook) that met the stated needs of teachers. Teacher motivation was strong because teammates in a strong PDS partnership provided the necessary supports to induce changes in teacher self-efficacy.

Details

School-University Partnerships, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1935-7125

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

22

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last 3 months (141)

Content type

Earlycite article (141)
1 – 10 of 141