Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 10 December 2019

Jessica Paule-Vianez, Milagros Gutiérrez-Fernández and José Luis Coca-Pérez

The purpose of this study is to construct the first short-term financial distress prediction model for the Spanish banking sector.

5955

Abstract

Purpose

The purpose of this study is to construct the first short-term financial distress prediction model for the Spanish banking sector.

Design/methodology/approach

The concept of financial distress covers a range of different types of financial problems, in addition to bankruptcy, which is not common in the sector. The methodology used to predict financial problems was artificial neural networks using traditional financial variables according to the capital, assets, management, earnings, liquidity and sensibility system, as well as a series of macroeconomic variables, the impact of which has been proven in a number of studies.

Findings

The results obtained show that artificial neural networks are a highly suitable method for studying financial distress in Spanish credit institutions and for predicting all cases in which an entity has short-term financial problems.

Originality/value

This is the first work that tries to build a model of artificial neural networks to predict the financial distress in the Spanish banking system, grouping under the concept of financial distress, apart from bankruptcy, other financial problems that affect the viability of these entities.

Details

Applied Economic Analysis, vol. 28 no. 82
Type: Research Article
ISSN: 2632-7627

Keywords

Open Access
Article
Publication date: 6 May 2022

Mohammed Ayoub Ledhem

The purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric…

1497

Abstract

Purpose

The purpose of this paper is to predict the daily accuracy improvement for the Jakarta Islamic Index (JKII) prices using deep learning (DL) with small and big data of symmetric volatility information.

Design/methodology/approach

This paper uses the nonlinear autoregressive exogenous (NARX) neural network as the optimal DL approach for predicting daily accuracy improvement through small and big data of symmetric volatility information of the JKII based on the criteria of the highest accuracy score of testing and training. To train the neural network, this paper employs the three DL techniques, namely Levenberg–Marquardt (LM), Bayesian regularization (BR) and scaled conjugate gradient (SCG).

Findings

The experimental results show that the optimal DL technique for predicting daily accuracy improvement of the JKII prices is the LM training algorithm based on using small data which provide superior prediction accuracy to big data of symmetric volatility information. The LM technique develops the optimal network solution for the prediction process with 24 neurons in the hidden layer across a delay parameter equal to 20, which affords the best predicting accuracy based on the criteria of mean squared error (MSE) and correlation coefficient.

Practical implications

This research would fill a literature gap by offering new operative techniques of DL to predict daily accuracy improvement and reduce the trading risk for the JKII prices based on symmetric volatility information.

Originality/value

This research is the first that predicts the daily accuracy improvement for JKII prices using DL with symmetric volatility information.

Details

Journal of Capital Markets Studies, vol. 6 no. 2
Type: Research Article
ISSN: 2514-4774

Keywords

Open Access
Article
Publication date: 24 May 2024

Bingzi Jin and Xiaojie Xu

Agriculture commodity price forecasts have long been important for a variety of market players. The study we conducted aims to address this difficulty by examining the weekly…

Abstract

Purpose

Agriculture commodity price forecasts have long been important for a variety of market players. The study we conducted aims to address this difficulty by examining the weekly wholesale price index of green grams in the Chinese market. The index covers a ten-year period, from January 1, 2010, to January 3, 2020, and has significant economic implications.

Design/methodology/approach

In order to address the nonlinear patterns present in the price time series, we investigate the nonlinear auto-regressive neural network as the forecast model. This modeling technique is able to combine a variety of basic nonlinear functions to approximate more complex nonlinear characteristics. Specifically, we examine prediction performance that corresponds to several configurations across data splitting ratios, hidden neuron and delay counts, and model estimation approaches.

Findings

Our model turns out to be rather simple and yields forecasts with good stability and accuracy. Relative root mean square errors throughout training, validation and testing are specifically 4.34, 4.71 and 3.98%, respectively. The results of benchmark research show that the neural network produces statistically considerably better performance when compared to other machine learning models and classic time-series econometric methods.

Originality/value

Utilizing our findings as independent technical price forecasts would be one use. Alternatively, policy research and fresh insights into price patterns might be achieved by combining them with other (basic) prediction outputs.

Details

Asian Journal of Economics and Banking, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 1 July 2021

Xiaochun Guan, Sheng Lou, Han Li and Tinglong Tang

Deployment of deep neural networks on embedded devices is becoming increasingly popular because it can reduce latency and energy consumption for data communication. This paper…

3134

Abstract

Purpose

Deployment of deep neural networks on embedded devices is becoming increasingly popular because it can reduce latency and energy consumption for data communication. This paper aims to give out a method for deployment the deep neural networks on a quad-rotor aircraft for further expanding its application scope.

Design/methodology/approach

In this paper, a design scheme is proposed to implement the flight mission of the quad-rotor aircraft based on multi-sensor fusion. It integrates attitude acquisition module, global positioning system position acquisition module, optical flow sensor, ultrasonic sensor and Bluetooth communication module, etc. A 32-bit microcontroller is adopted as the main controller for the quad-rotor aircraft. To make the quad-rotor aircraft be more intelligent, the study also proposes a method to deploy the pre-trained deep neural networks model on the microcontroller based on the software packages of the RT-Thread internet of things operating system.

Findings

This design provides a simple and efficient design scheme to further integrate artificial intelligence (AI) algorithm for the control system design of quad-rotor aircraft.

Originality/value

This method provides an application example and a design reference for the implementation of AI algorithms on unmanned aerial vehicle or terminal robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 4 April 2023

Xiaojie Xu and Yun Zhang

Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present…

1252

Abstract

Purpose

Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present study, the authors assess the forecast problem for the weekly wholesale price index of yellow corn in China during January 1, 2010–January 10, 2020 period.

Design/methodology/approach

The authors employ the nonlinear auto-regressive neural network as the forecast tool and evaluate forecast performance of different model settings over algorithms, delays, hidden neurons and data splitting ratios in arriving at the final model.

Findings

The final model is relatively simple and leads to accurate and stable results. Particularly, it generates relative root mean square errors of 1.05%, 1.08% and 1.03% for training, validation and testing, respectively.

Originality/value

Through the analysis, the study shows usefulness of the neural network technique for commodity price forecasts. The results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.

Details

EconomiA, vol. 24 no. 1
Type: Research Article
ISSN: 1517-7580

Keywords

Open Access
Article
Publication date: 3 August 2020

Zhao-Peng Li, Li Yang, Si-Rui Li and Xiaoling Yuan

China’s national carbon market will be officially launched in 2020, when it will become the world’s largest carbon market. However, China’s carbon market is faced with various…

1458

Abstract

Purpose

China’s national carbon market will be officially launched in 2020, when it will become the world’s largest carbon market. However, China’s carbon market is faced with various major challenges. One of the most important challenges is its impact on the social and economic development of arid and semi-arid regions. By simulating the carbon price trends under different economic development and energy consumption levels, this study aims to help the government can plan ahead to formulate various countermeasures to promote the integration of arid and semi-arid regions into the national carbon market.

Design/methodology/approach

To achieve this goal, this paper builds a back propagation neural network model, takes the third phase of the European Union Emissions Trading System (EU ETS) as the research object and uses the mean impact value method to screen out the important driving variables of European Union Allowance (EUA) price, including economic development (Stoxx600, Stoxx50, FTSE, CAC40 and DAX), black energy (coal and Brent), clean energy (gas, PV Crystalox Solar and Nordex) and carbon price alternatives Certification Emission Reduction (CER). Finally, this paper sets up six scenarios by combining the above variables to simulate the impact of different economic development and energy consumption levels on carbon price trends.

Findings

Under the control of the unchanged CER price level, economic development, black energy and clean energy development will all have a certain impact on the EUA price trends. When economic development, black energy consumption and clean energy development are on the rise, the EUA price level will increase. When the three types of variables show a downward trend, except for the sluggish development of clean energy, which will cause the EUA price to rise sharply, the EUA price trend will also decline accordingly in the remaining scenarios.

Originality/value

On the one hand, this paper incorporates driving factors of carbon price into the construction of carbon price prediction system, which not only has higher prediction accuracy but also can simulate the long-term price trend. On the other hand, this paper uses scenario simulation to show the size, direction and duration of the impact of economic development, black energy consumption and clean energy development on carbon prices in a more intuitive way.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 12 April 2019

Darlington A. Akogo and Xavier-Lewis Palmer

Computer vision for automated analysis of cells and tissues usually include extracting features from images before analyzing such features via various machine learning and machine…

1158

Abstract

Purpose

Computer vision for automated analysis of cells and tissues usually include extracting features from images before analyzing such features via various machine learning and machine vision algorithms. The purpose of this work is to explore and demonstrate the ability of a Convolutional Neural Network (CNN) to classify cells pictured via brightfield microscopy without the need of any feature extraction, using a minimum of images, improving work-flows that involve cancer cell identification.

Design/methodology/approach

The methodology involved a quantitative measure of the performance of a Convolutional Neural Network in distinguishing between two cancer lines. In their approach, they trained, validated and tested their 6-layer CNN on 1,241 images of MDA-MB-468 and MCF7 breast cancer cell line in an end-to-end fashion, allowing the system to distinguish between the two different cancer cell types.

Findings

They obtained a 99% accuracy, providing a foundation for more comprehensive systems.

Originality/value

Value can be found in that systems based on this design can be used to assist cell identification in a variety of contexts, whereas a practical implication can be found that these systems can be deployed to assist biomedical workflows quickly and at low cost. In conclusion, this system demonstrates the potentials of end-to-end learning systems for faster and more accurate automated cell analysis.

Details

Journal of Industry-University Collaboration, vol. 1 no. 1
Type: Research Article
ISSN: 2631-357X

Keywords

Open Access
Article
Publication date: 21 April 2022

Myeongjin Kim and Joo Hyun Moon

This study aims to introduce a deep neural network (DNN) to estimate the effective thermal conductivity of the flat heat pipe with spreading thermal resistance.

1900

Abstract

Purpose

This study aims to introduce a deep neural network (DNN) to estimate the effective thermal conductivity of the flat heat pipe with spreading thermal resistance.

Design/methodology/approach

A total of 2,160 computational fluid dynamics simulation cases over up to 2,000 W/mK are conducted to regress big data and predict a wider range of effective thermal conductivity up to 10,000 W/mK. The deep neural networking is trained with reinforcement learning from 10–12 steps minimizing errors in each step. Another 8,640 CFD cases are used to validate.

Findings

Experimental, simulational and theoretical approaches are used to validate the DNN estimation for the same independent variables. The results from the two approaches show a good agreement with each other. In addition, the DNN method required less time when compared to the CFD.

Originality/value

The DNN method opens a new way to secure data while predicting in a wide range without experiments or simulations. If these technologies can be applied to thermal and materials engineering, they will be the key to solve thermal obstacles that many longing to overcome.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 October 2002

G.P. Liu

148

Abstract

Details

Industrial Robot: An International Journal, vol. 29 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 December 2003

Jon Rigelsford

239

Abstract

Details

Sensor Review, vol. 23 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 1000