Search results

1 – 10 of 88
Article
Publication date: 30 April 2024

Sidhartha Harichandan and Sanjay Kumar Kar

The purpose of this study is to explore the determinants influencing industrial adoption of green hydrogen amidst the global transition towards sustainability. Recognizing green…

Abstract

Purpose

The purpose of this study is to explore the determinants influencing industrial adoption of green hydrogen amidst the global transition towards sustainability. Recognizing green hydrogen as a pivotal clean energy alternative for industrial applications is critical for understanding its potential integration into sustainable practices.

Design/methodology/approach

This research examines the impact of factors such as innovativeness, perceived ease of use, user comfort, optimism and governmental policies on the industrial intention towards green hydrogen usage. Using responses from 227 Indian industry professionals and conducting analysis via the SmartPLS software, the study reveals a discernible discomfort among industrial workers pertaining to the daily application of green hydrogen.

Findings

The research presents an array of policy recommendations for stakeholders. Emphasized strategies include the introduction of green hydrogen certificates, sustainable public procurement mechanisms, tax incentives, green labelling protocols and the establishment of a dedicated hydrogen skill development council, all of which can significantly influence the trajectory of green hydrogen adoption within the industrial sector.

Originality/value

This research synthesizes various elements, from industry perception and challenges to policy implications, presenting a holistic view of green hydrogen’s potential role in industry decarbonization and SDG realization. In essence, this study deepens not only the empirical understanding but also pioneers fresh theoretical frameworks, setting a precedent for subsequent academic endeavours.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 12 April 2024

Dongyang Li, Guanghu Yao, Yuyuan Guan, Yaolei Han, Linya Zhao, Lining Xu and Lijie Qiao

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated…

Abstract

Purpose

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated heat exchangers.

Design/methodology/approach

The pitting initiation and propagation behaviors were investigated by electrochemical and chemical immersion experiments and observed and analyzed by scanning electron microscope and energy dispersive spectrometer methods.

Findings

The results show that hydrogen significantly affects the electrochemical behavior of Incoloy 825; the self-corrosion potential decreased from −197 mV before hydrogen charging to −263 mV, −270 mV and −657 mV after hydrogen charging, and the corrosion current density increased from 0.049 µA/cm2 before hydrogen charging to 2.490 µA/cm2, 2.560 µA/cm2 and 2.780 µA/cm2 after hydrogen charging. The pitting susceptibility of the material increases.

Originality/value

Hydrogen is enriched on the precipitate, and the pitting corrosion also initiates at that location. The synergistic effect of hydrogen and precipitate destroys the passive film on the metal surface and promotes pitting initiation.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Expert briefing
Publication date: 28 March 2024

The plant would be Uruguay’s largest-ever private investment, providing an estimated 3,000 jobs and producing synthetic fuels including green gasoline and green methanol, a…

Details

DOI: 10.1108/OXAN-DB286070

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 25 April 2024

Hang Jia, Zhiming Gao, Shixiong Wu, Jia Liang Liu and Wenbin Hu

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Abstract

Purpose

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Design/methodology/approach

This study investigated the electrochemical characteristics of Q235 steel with and without MCI by polarization curve and electrochemical impedance spectroscopy. Besides, the surface composition of Q235 steel under different environments was analyzed by X-ray photoelectron spectroscopy. In addition, the migration characteristic of MCI and the adsorption behavior of MCI under cathodic polarization were studied using Raman spectroscopy.

Findings

Diethanolamine (DEA) and N, N-dimethylethanolamine (DMEA) can inhibit the increase of Fe(II) in the oxide film of Q235 steel under cathodic polarization. The adsorption stability of DMEA film was higher under cathodic polarization potential, showing a higher corrosion inhibition ability. The corrosion inhibition mechanism of DEA and DMEA under cathodic polarization potential was proposed.

Originality/value

The MCI has a broad application prospect in the repair of damaged reinforced concrete due to its unique migratory characteristics. The interaction between MCIs, rebar and concrete with different compositions has been studied, but the passivation behavior of the steel interface in the presence of both the migrating electric field and corrosion inhibitors has been neglected. And it was investigated in this paper.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Expert briefing
Publication date: 18 April 2024

In March, Sonelgaz awarded 19 contracts for the installation of almost 3 gigawatts of solar power generation capacity. Increasing the renewables mix in Algeria's energy balance…

Details

DOI: 10.1108/OXAN-DB286498

ISSN: 2633-304X

Keywords

Geographic
Topical
Expert briefing
Publication date: 28 March 2024

The GDP growth target of 5% and the urban job creation target of 12 million are unchanged from last year, but harder to achieve as the post-pandemic rebound fades and large-scale…

Details

DOI: 10.1108/OXAN-DB286113

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 11 January 2024

Sanjay Kumar Kar, Sidhartha Harichandan and Om Prakash

This empirical research intends to examine factors influencing the adoption of renewable energy (RE) using a conceptual model of the consumer decision-making process.

113

Abstract

Purpose

This empirical research intends to examine factors influencing the adoption of renewable energy (RE) using a conceptual model of the consumer decision-making process.

Design/methodology/approach

This study uses a primary response-based survey to collect data from 668 respondents interested in adopting RE for their daily usage. The sample respondents were chosen through a multi-stage random stratified technique. The responses were analyzed through structural equation-based modeling techniques to discuss the findings and suggest further implications.

Findings

The findings suggest that factors like knowledge, policy incentives, sustainable development goals (SDGs-7, 11 and 13), socio-economic benefits and risk perception significantly impact the adoption of RE. Besides, risk perception mediates between environmental concerns and the adoption of RE. Also, age has a significant role in RE adoption.

Social implications

The study finds the critical role of government in introducing financial incentives to reduce the initial cost of renewable adoption. Doing so will also promote clean and equitable energy access to society leading to further fulfillment of SDGs. Additionally, steps like knowledge enrichment, designing suitable policies for a manufacturer and public-friendly renewable market development will further facilitate renewable adoption in society.

Originality/value

With an objective to study the public perception and attitude towards renewable adoption, this empirical research is the first of its kind to carry out a real-time survey of the Indian population and suggest policy implications which would benefit all the concerned stakeholders.

Details

Journal of Advances in Management Research, vol. 21 no. 2
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 2 February 2022

Munir Ahmed, Muhammad Shakaib and Mubashir Ali Siddiqui

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different…

Abstract

Purpose

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different locations of the combustion chamber. This study aims to quantify NOx formed inside the combustion chamber using two fuels, a conventional diesel (n-heptane) and a biodiesel (methyl oleate).

Design/methodology/approach

This research uses a computational fluid dynamics simulation of chemically reacting fluid flow to quantify and compare oxides of nitrogen (NOx) in a compression ignition (CI) engine. The study expends species transport model of ANSYS FLUENT. The simulation model has provided the temperature profile inside the combustion chamber, which is subsequently used to calculate NOx using the NOx model. The simulation uses a single component hydrocarbon and oxygenated hydrocarbon to represent fuels; for instance, it uses n-heptane (C7H16) for diesel and methyl-oleate (C19H36O2) for biodiesel. A stoichiometric air–fuel mixture is used for both fuels. The simulation runs a single cylinder CI engine of 650 cm3 swept volume with inlet and exhaust valves closed.

Findings

The pattern for variation of velocity, an important flow parameter, which affects combustion and subsequently oxides of nitrogen (NOx) formation at different piston locations, is similar for the two fuels. The variations of in-cylinder temperature and NOx formation with crank angles have similar patterns for the fuels, diesel and biodiesel. However, the numerical values of in-cylinder temperature and mass fraction of NOx are different. The volume averaged static peak temperatures are 1,013 K in case of diesel and 1,121 K in case of biodiesel, while the mass averaged mass fractions of NOx are 15 ppm for diesel and 141 ppm for biodiesel. The temperature rise after combustion is more in case of biodiesel, which augments the oxides of nitrogen formation. A new parameter, relative mass fraction of NOx, yields 28% lower value for biodiesel than for diesel.

Originality/value

This work uses a new concept of simulating simple chemical reacting system model to quantify oxides of NOx using single component fuels. Simplification has captured required fluid flow data to analyse NOx emission from CI engine while reducing computational time and expensive experimental tests.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 16 May 2024

Viviana Pilato and Ari Van Assche

Carbon leakage – where multinational enterprises (MNEs) transfer carbon-intensive production activities to countries with laxer emissions constraints for cost purposes – is one of…

Abstract

Carbon leakage – where multinational enterprises (MNEs) transfer carbon-intensive production activities to countries with laxer emissions constraints for cost purposes – is one of the main mechanisms through which international business (IB) contributes to climate change. This chapter discusses a new policy initiative called the Carbon Border Adjustment Mechanism (CBAM) that the European Union (EU) introduced in May 2023 to fight carbon leakage. The authors analyze the logic of CBAM and discuss how it will likely influence IB both in industries that are directly targeted by CBAM and related industries that will face spillover effects.

Details

Walking the Talk? MNEs Transitioning Towards a Sustainable World
Type: Book
ISBN: 978-1-83549-117-1

Keywords

1 – 10 of 88