Search results

1 – 10 of over 1000
Content available
Article
Publication date: 7 July 2020

Michael Wells, Michael Kretser, Ben Hazen and Jeffery Weir

This study aims to explore the viability of using C-17 reduced-engine taxi procedures from a cost savings and capability perspective.

1169

Abstract

Purpose

This study aims to explore the viability of using C-17 reduced-engine taxi procedures from a cost savings and capability perspective.

Design/methodology/approach

This study model expected engine fuel flow based on the number of operational engines, aircraft gross weight (GW) and average aircraft groundspeed. Using this model, the research executes a cost savings simulation estimating the expected annual savings produced by the proposed taxi methodology. Operational and safety risks are also considered.

Findings

The results indicate that significant fuel and costs savings are available via the employment of reduced-engine taxi procedures. On an annual basis, the mobility air force has the capacity to save approximately 1.18 million gallons of jet fuel per year ($2.66m in annual fuel costs at current rates) without significant risk to operations. The two-engine taxi methodology has the ability to generate capable taxi thrust for a maximum GW C-17 with nearly zero risks.

Research limitations/implications

This research was limited to C-17 procedures and efficiency improvements specifically, although it suggests that other military aircraft could benefit from these findings as is evident in the commercial airline industry.

Practical implications

This research recommends coordination with the original equipment manufacturer to rework checklists and flight manuals, development of a fleet-wide training program and evaluation of future aircraft recapitalization requirements intended to exploit and maximize aircraft surface operation savings.

Originality/value

If implemented, the proposed changes would benefit the society as government resources could be spent elsewhere and the impact on the environment would be reduced. This research conducted a rigorous analysis of the suitability of implementing a civilian airline’s best practice into US Air Force operations.

Details

Journal of Defense Analytics and Logistics, vol. 4 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 7 April 2022

Raquel Delgado-Aguilera Jurado, Victor Fernando Gómez Comendador, María Zamarreño Suárez, Francisco Pérez Moreno, Christian Eduardo Verdonk Gallego and Rosa María Arnaldo Valdes

The purpose of this study is to establish a systematic framework to characterise the safety of air routes, in terms of separation minima infringements (SMIs) between en-route…

Abstract

Purpose

The purpose of this study is to establish a systematic framework to characterise the safety of air routes, in terms of separation minima infringements (SMIs) between en-route aircraft, based on the definition of models known as safety performance functions.

Design/methodology/approach

Techniques with high predictive capability were selected that enable both expert knowledge and data to be harnessed: Bayesian networks. It was necessary to establish a conceptual framework that integrates the knowledge currently available on the causality and precursors of SMIs with the hindsight derived from the analysis of the type of data available. To translate the conceptual framework into a set of causal subnets, the concepts of air traffic management (ATM) barrier model and event trees have been incorporated.

Findings

The model combines analytics and insights, as well as predictive capability, to answer the question of how airspace separation infringements are produced and what their frequency of occurrence will be. The main outputs of the network are the predicted probability of success for the ATM barriers and the predicted probability distribution of the vertical and horizontal separation of an aircraft in its closest point of approach.

Originality/value

The main contribution of this work is that, by virtue of the calculation capacity obtained, the network can be used to draw conclusions about the impact that a modification of the airspace and of the traffic, or operational conditions, would have on the effectiveness of the barriers and on the final distributions of distance between aircraft in the CPA, thereby estimating the probability of SMI.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 4 May 2020

José Pedro Soares Pinto Leite and Mark Voskuijl

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to…

8260

Abstract

Purpose

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraftaircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management.

Design/methodology/approach

To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory.

Findings

The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found.

Originality/value

The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 22 January 2024

María Carmona, Rafael Casado González, Aurelio Bermúdez, Miguel Pérez-Francisco, Pablo Boronat and Carlos Calafate

In the aerial transportation area, fuel costs are critical to the economic viability of companies, and so urgent measures should be adopted to avoid any unnecessary increase in…

Abstract

Purpose

In the aerial transportation area, fuel costs are critical to the economic viability of companies, and so urgent measures should be adopted to avoid any unnecessary increase in operational costs. In particular, this paper addresses the case of missed approach manouevres, showing that it is still possible to optimize the usual procedure.

Design/methodology/approach

The costs involved in a standard procedure following a missed approach are analysed through a simulation model, and they are compared with the improvements achieved with a fast reinjection scheme proposed in a prior work.

Findings

Experimental results show that, for a standard A320 aircraft, fuel savings ranging from 55% to 90% can be achieved through the reinjection method.

Originality/value

To the best of the authors’ knowledge, this work is the first study in the literature addressing the fuel savings benefits obtained by applying a reinjection technique for missed approach manoeuvres.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 26 April 2022

Jingfeng Xie, Jun Huang, Lei Song, Jingcheng Fu and Xiaoqiang Lu

The typical approach of modeling the aerodynamics of an aircraft is to develop a complete database through testing or computational fluid dynamics (CFD). The database will be huge…

2068

Abstract

Purpose

The typical approach of modeling the aerodynamics of an aircraft is to develop a complete database through testing or computational fluid dynamics (CFD). The database will be huge if it has a reasonable resolution and requires an unacceptable CFD effort during the conceptional design. Therefore, this paper aims to reduce the computing effort required via establishing a general aerodynamic model that needs minor parameters.

Design/methodology/approach

The model structure was a preconfigured polynomial model, and the parameters were estimated with a recursive method to further reduce the calculation effort. To uniformly disperse the sample points through each step, a unique recursive sampling method based on a Voronoi diagram was presented. In addition, a multivariate orthogonal function approach was used.

Findings

A case study of a flying wing aircraft demonstrated that generating a model with acceptable precision (0.01 absolute error or 5% relative error) costs only 1/54 of the cost of creating a database. A series of six degrees of freedom flight simulations shows that the model’s prediction was accurate.

Originality/value

This method proposed a new way to simplify the model and recursive sampling. It is a low-cost way of obtaining high-fidelity models during primary design, allowing for more precise flight dynamics analysis.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 1 June 2023

Marcin Figat and Agnieszka Kwiek

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced…

1786

Abstract

Purpose

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced drag. The purpose of this paper is to determine whether a certain trend in the wingspan impact on aircraft dynamic stability can be identified. The secondary goal was to compare the response to control of flaps placed on a front and rear wing.

Design/methodology/approach

The aerodynamic data and control derivatives were obtained from the computational fluid dynamics computations performed by the MGAERO software. The equations of aircraft longitudinal motion in a state space form were used. The equations were built based on the aerodynamic coefficients, stability and control derivatives. The analysis of the dynamic stability was done in the MATLAB by solving the eigenvalue problem. The response to control was computed by the step response method using MATLAB.

Findings

The results of this study showed that because of a strong aerodynamic coupling, a nonlinear relation between the wing size and aircraft dynamic stability proprieties was observed. In the case of the flap deflection, stronger oscillation was observed for the front flap.

Originality/value

Results of dynamic stability of aircraft in the tandem wing configuration can be found in the literature, but those studies show outcomes of a single configuration, while this paper presents a comprehensive investigation into the impact of wingspan on aircraft dynamic stability. The results reveal that because of a strong aerodynamic coupling, the relation between the span factor and dynamic stability is nonlinear. Also, it has been demonstrated that the configuration of two wings with the same span is not the optimal one from the aerodynamic point of view.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 December 2004

Terry Ford

259

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 20 January 2022

Francisco Pérez Moreno, Víctor Fernando Gómez Comendador, Raquel Delgado-Aguilera Jurado, María Zamarreño Suárez, Dominik Janisch and Rosa María Arnaldo Valdes

The purpose of this paper is to set out a methodology for characterising the complexity of air traffic control (ATC) sectors based on individual operations. This machine learning…

Abstract

Purpose

The purpose of this paper is to set out a methodology for characterising the complexity of air traffic control (ATC) sectors based on individual operations. This machine learning methodology also learns from the data on which the model is based.

Design/methodology/approach

The methodology comprises three steps. Firstly, a statistical analysis of individual operations is carried out using elementary or initial variables, and these are combined using machine learning. Secondly, based on the initial statistical analysis and using machine learning techniques, the impact of air traffic flows on an ATC sector are determined. The last step is to calculate the complexity of the ATC sector based on the impact of its air traffic flows.

Findings

The results obtained are logical from an operational point of view and are easy to interpret. The classification of ATC sectors based on complexity is quite accurate.

Research limitations/implications

The methodology is in its preliminary phase and has been tested with very little data. Further refinement is required.

Originality/value

The methodology can be of significant value to ATC in that when applied to real cases, ATC will be able to anticipate the complexity of the airspace and optimise its resources accordingly.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 9 November 2018

Viviane Souza Vilela Junqueira, Marcelo Seido Nagano and Hugo Hissashi Miyata

This paper aims to exemplify the use of project management tools in the scheduling of aircraft maintenance activities. This process is known as maintenance, repair and overhaul…

6731

Abstract

Purpose

This paper aims to exemplify the use of project management tools in the scheduling of aircraft maintenance activities. This process is known as maintenance, repair and overhaul and it has gained importance within the aeronautical sector due to its expected growth in the coming years; however, it also faces increasing competitiveness in its market. This fact gives rise to the need of acting in maintenance management and seeking lower costs while maintaining the quality of the service provided. The purpose of this paper is to propose the structuring of a procedure that aims to reduce the total maintenance time (downtime) and guarantee the delivery of the aircraft on time.

Design/methodology/approach

The paper, through a case study at a Brazilian aircraft maintenance center, used critical path method and critical chain project management, the latter being derived from the theory of constraints, with the purpose of analyzing resources systematically and synchronizing the activities in the precedence network.

Findings

As a result, it is shown that downtime can be reduced from 11 to 5 days and improvements are proposed to achieve greater market competitiveness.

Originality/value

This paper demonstrates the competitive advantage that resulted from the application of project management tools in the aircraft maintenance planning and execution.

Details

Revista de Gestão, vol. 27 no. 1
Type: Research Article
ISSN: 2177-8736

Keywords

Content available
Book part
Publication date: 21 October 2019

Abstract

Details

Airline Economics in Europe
Type: Book
ISBN: 978-1-78973-282-5

1 – 10 of over 1000