Search results

1 – 10 of 24
Article
Publication date: 20 March 2024

Shufeng Tang, Yongsheng Kou, Guoqing Zhao, Huijie Zhang, Hong Chang, Xuewei Zhang and Yunhe Zou

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power…

Abstract

Purpose

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power transmission towers.

Design/methodology/approach

A connecting rod type gripper has been designed to achieve stable grasping of angle steel. Before grasping, use coordination between structures to achieve stable docking and grasping. By using the alternating movements of two claws and the middle climbing mechanism, the climbing and obstacle crossing of the angle steel were achieved.

Findings

Through a simple linkage mechanism, a climbing robot has been designed, greatly reducing the overall mass of the robot. It can also carry a load of 1 kg, and the climbing mechanism can perform stable climbing. The maximum step distance of the climbing robot is 543 mm, which can achieve the crossing of angle steel obstacles.

Originality/value

A transmission tower climbing mechanism was proposed by analyzing the working environment. Through the locking ability of the screw nut, stable clamping of the angle steel is achieved, and a pitch mechanism is designed to adjust the posture of the hand claw.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 April 2024

Yi Liu, Rui Ning, Mingxin Du, Shuanghe Yu and Yan Yan

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork…

Abstract

Purpose

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork production, the development of efficient and robust meat cutting algorithms are hot issues. The uncertain and dynamic nature of the online porcine belly cutting imposes a challenge for the robot to identify and cut efficiently and accurately. Based on the above challenges, an online porcine belly cutting method using 3D laser point cloud is proposed.

Design/methodology/approach

The robotic cutting system is composed of an industrial robotic manipulator, customized tools, a laser sensor and a PC.

Findings

Analysis of experimental results shows that by comparing with machine vision, laser sensor-based robot cutting has more advantages, and it can handle different carcass sizes.

Originality/value

An image pyramid method is used for dimensionality reduction of the 3D laser point cloud. From a detailed analysis of the outward and inward cutting errors, the outward cutting error is the limiting condition for reducing the segments by segmentation algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 May 2024

Jun Tian, Xungao Zhong, Xiafu Peng, Huosheng Hu and Qiang Liu

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between…

Abstract

Purpose

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between the image features and the robot moving. While some of the drawbacks associated with most visual servoing (VS) approaches include the vision–motor mapping computation and the robots’ dynamic performance, the problem of designing optimal and more effective VS systems still remains challenging. Thus, the purpose of this paper is to propose and evaluate the VS method for robots in an unstructured environment.

Design/methodology/approach

This paper presents a new model-free VS control of a robotic manipulator, for which an adaptive estimator aid by network learning is proposed using online estimation of the vision–motor mapping relationship in an environment without the knowledge of statistical noise. Based on the adaptive estimator, a model-free VS schema was constructed by introducing an active disturbance rejection control (ADRC). In our schema, the VS system was designed independently of the robot kinematic model.

Findings

The various simulations and experiments were conducted to verify the proposed approach by using an eye-in-hand robot manipulator without calibration and vision depth information, which can improve the autonomous maneuverability of the robot and also allow the robot to adapt its motion according to the image feature changes in real time. In the current method, the image feature trajectory was stable in the camera field range, and the robot’s end motion trajectory did not exhibit shock retreat. The results showed that the steady-state errors of image features was within 19.74 pixels, the robot positioning was stable within 1.53 mm and 0.0373 rad and the convergence rate of the control system was less than 7.21 s in real grasping tasks.

Originality/value

Compared with traditional Kalman filtering for image-based VS and position-based VS methods, this paper adopts the model-free VS method based on the adaptive mapping estimator combination with the ADRC controller, which is effective for improving the dynamic performance of robot systems. The proposed model-free VS schema is suitable for robots’ grasping manipulation in unstructured environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 April 2024

Li Li, Tong Huang, Chujia Pan, J.F. Pan and Wenbin Su

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the…

Abstract

Purpose

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.

Design/methodology/approach

An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.

Findings

The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.

Originality/value

The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 May 2024

Gan Zhan, Zhihua Chen, Zhenyu Zhang, Jigang Zhan, Wentao Yu and Jiehao Li

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking…

Abstract

Purpose

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking control architecture that integrates perception, planning, and motion control.

Design/methodology/approach

Firstly, the proposed dynamic docking control architecture uses laser sensors and a charge-coupled device camera to perceive the pose of the target. The sensor data are mapped to a high-dimensional potential field space and fused to reduce interference caused by detection noise. Next, a new potential function based on multi-dimensional space is developed for docking path planning, which enables the docking mechanism based on Stewart platform to rapidly converge to the target axis of the locking mechanism, which improves the adaptability and terminal docking accuracy of the docking state. Finally, to achieve precise tracking and flexible docking in the final stage, the system combines a self-impedance controller and an impedance control algorithm based on the planned trajectory.

Findings

Extensive simulations and experiments have been conducted to validate the effectiveness of the dynamic docking system and its control architecture. The results indicate that even if the target moves randomly, the system can successfully achieve accurate, stable and flexible dynamic docking.

Originality/value

This research can provide technical guidance and reference for docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 21 May 2024

Muhammad Shujaat Mubarik and Sharfuddin Ahmed Khan

Digital technologies (DTs) have emerged as a major driving force, transmuting the ways Supply Chains (SCs) are managed. The integration of DTs in supply chain management (SCM)…

Abstract

Digital technologies (DTs) have emerged as a major driving force, transmuting the ways Supply Chains (SCs) are managed. The integration of DTs in supply chain management (SCM), Digital Supply Chain Management (DSCM), has fundamentally reshaped the SCM landscape, offering new opportunities and challenges for organizations. This chapter provides a comprehensive overview of modern DTs and the way they impact modern SCM. This chapter has twofold objectives. First, it illustrates the major changes that DTs have brought to the supply chain landscape, unraveling their multifaceted implications. Second, it offers readers a deeper and comprehensive understanding of the challenges and opportunities arising from the incorporation of DTs into supply chains. By going through the chapter, readers will be able to have a comprehensive grasp of how DTs are reshaping SCM and how organizations can survive and thrive in the digital age. This chapter commences by shedding light on how DTs have and continue to redefine SCM, improving supply chain resilience, visibility, and sustainability in an increasingly complex and interconnected world. It also highlights the role of DTs in enhancing SC visibility, agility, and customer-centricity. Furthermore, this chapter briefly highlights the challenges related to the adoption (pre and post) of DTs in SCM, elucidating on issues related to talent acquisition, data security, and regulatory compliance. It also highlights the ethical and societal implications of this digital transformation, emphasizing the significance of responsible and sustainable practices. This chapter, with the help of three cases, illustrates how the adoption of DTs in SC can impact the various SC performance indicators.

Details

The Theory, Methods and Application of Managing Digital Supply Chains
Type: Book
ISBN: 978-1-80455-968-0

Keywords

Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 May 2024

Linda Alkire, Anil Bilgihan, My (Myla) Bui, Alexander John Buoye, Seden Dogan and Seoyoung Kim

This article introduces the Responsible AI for Service Excellence (RAISE) framework. RAISE is a strategic framework for responsibly integrating AI into service industries. It…

Abstract

Purpose

This article introduces the Responsible AI for Service Excellence (RAISE) framework. RAISE is a strategic framework for responsibly integrating AI into service industries. It emphasizes collaborative AI design and deployment that aligns with the evolving global standards and societal well-being while promoting business success and sustainable development.

Design/methodology/approach

This multidisciplinary conceptual article draws upon the United Nations' Sustainable Development Goals (SDGs) and AI ethics guidelines to lay out three principles for practicing RAISE: (1) Embrace AI to serve the greater good, (2) Design and deploy responsible AI and (3) Practice transformative collaboration with different service organizations to implement responsible AI.

Findings

By acknowledging the potential risks and challenges associated with AI usage, this article provides practical recommendations for service entities (i.e. service organizations, policymakers, AI developers, customers and researchers) to strengthen their commitment to responsible and sustainable service practices.

Originality/value

This is the first service research article to discuss and provide specific practices for leveraging responsible AI for service excellence.

Details

Journal of Service Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-5818

Keywords

Open Access
Article
Publication date: 21 May 2024

Kristina M. Eriksson and Liselott Lycke

Technological advancements and global societal changes reshapes manufacturing industry emphasizing needs for competence development of industrial professionals. The purpose of…

Abstract

Purpose

Technological advancements and global societal changes reshapes manufacturing industry emphasizing needs for competence development of industrial professionals. The purpose of this paper is to study how organizational learning supports the development of academic structures, creating agile and sustainable formal educational models meeting novel competence needs.

Design/methodology/approach

The qualitative case study, part of a longitudinal research study, focuses on internal academic processes supporting a new formal educational model. Qualitative data was collected through five focus groups, incorporating 32 informants from different HEI function categories.

Findings

Changing traditional academic structures requires joint engagement between all HEI functions, emphasizing organizational learning with subprocesses of searching, creating, sustaining and exchanging knowledge in a learning loop. Results show a consensus among the different HEI functions regarding the value of the HEI’s coproduction with society; however, bureaucracy and academic structure hinder flexibility. Cross-functional teams building a “chain-of-trust” throughout the HEI coupled with full management support show opportunities to progress into a learning organization.

Practical implications

Organizational learning within HEIs requires trustful and open communication, multifunction knowledge exchange, holistic views of processes and system thinking, achieved through cross-functional teams and continuous improvement through learning loops.

Social implications

Industry-academic collaboration on formal education for lifelong learning needs to become both agile and resilience to meet technological advancement and sustainability.

Originality/value

Novel technology, digitalization and sustainability gain ground and require that society and organizations, including academia, change and learn. This means that academia is meeting new challenges and needs to develop internal processes.

Details

The Learning Organization, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-6474

Keywords

Open Access
Article
Publication date: 2 January 2024

Michelle Hudson, Heather Leary, Max Longhurst, Joshua Stowers, Tracy Poulsen, Clara Smith and Rebecca L. Sansom

The authors are developing a model for rural science teacher professional development, building teacher expertise and collaboration and creating high-quality science lessons…

Abstract

Purpose

The authors are developing a model for rural science teacher professional development, building teacher expertise and collaboration and creating high-quality science lessons: technology-mediated lesson study (TMLS).

Design/methodology/approach

TMLS provided the means for geographically distributed teachers to collaborate, develop, implement and improve lessons. TMLS uses technology to capture lesson implementation and collaborate on lesson iterations.

Findings

This paper describes the seven steps of the TMLS process with examples, showing how teachers develop their content and pedagogical knowledge while building relationships.

Originality/value

The TMLS approach provides an innovative option for teachers to collaborate across distances and form strong, lasting relationships with others.

Details

International Journal for Lesson & Learning Studies, vol. 13 no. 5
Type: Research Article
ISSN: 2046-8253

Keywords

1 – 10 of 24