Search results

1 – 10 of 54
Article
Publication date: 20 March 2024

Shufeng Tang, Yongsheng Kou, Guoqing Zhao, Huijie Zhang, Hong Chang, Xuewei Zhang and Yunhe Zou

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power…

Abstract

Purpose

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power transmission towers.

Design/methodology/approach

A connecting rod type gripper has been designed to achieve stable grasping of angle steel. Before grasping, use coordination between structures to achieve stable docking and grasping. By using the alternating movements of two claws and the middle climbing mechanism, the climbing and obstacle crossing of the angle steel were achieved.

Findings

Through a simple linkage mechanism, a climbing robot has been designed, greatly reducing the overall mass of the robot. It can also carry a load of 1 kg, and the climbing mechanism can perform stable climbing. The maximum step distance of the climbing robot is 543 mm, which can achieve the crossing of angle steel obstacles.

Originality/value

A transmission tower climbing mechanism was proposed by analyzing the working environment. Through the locking ability of the screw nut, stable clamping of the angle steel is achieved, and a pitch mechanism is designed to adjust the posture of the hand claw.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 February 2024

Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…

Abstract

Purpose

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.

Design/methodology/approach

By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.

Findings

The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.

Practical implications

The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.

Originality/value

A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 October 2023

Zijing Ye, Huan Li and Wenhong Wei

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such…

Abstract

Purpose

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path.

Design/methodology/approach

Firstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning.

Findings

Simulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality.

Originality/value

Aiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 5 September 2023

Caihua Yu, Heng Zhang and Tonghui Lian

This study aims to explore the influence of risk preference and information acquisition on outdoor tourism safety decision-making.

Abstract

Purpose

This study aims to explore the influence of risk preference and information acquisition on outdoor tourism safety decision-making.

Design/methodology/approach

Five hundred twenty outdoor tourists were surveyed, and data were analyzed using two-stage regression.

Findings

Risk preference positively affects tourists’ safety decisions for outdoor travel. The greater the risk preference is, the more likely the tourists are to make the risky decision of outdoor tourism. Information acquisition significantly negatively affects tourists’ safety decisions for outdoor tourism. Tourists who obtain information through social channels are more likely to make safer travel decisions than those who do not.

Originality/value

Risk preference and information acquisition are introduced into outdoor tourism safety research.

Article
Publication date: 30 April 2024

Fang Liu, Zilong Wang, JiaCheng Zhou, Yuqin Wu and Zhen Wang

The purpose of this study is to investigate the effects of Ce and Sb doping on the microstructure and thermal mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder. The effects…

Abstract

Purpose

The purpose of this study is to investigate the effects of Ce and Sb doping on the microstructure and thermal mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder. The effects of 0.5%Sb and 0.07%Ce doping on microstructure, thermal properties and mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder were investigated.

Design/methodology/approach

According to the mass ratio, the solder alloys were prepared from tin ingot, antimony ingot, silver ingot and copper ingot with purity of 99.99% at 400°C. X-ray diffractometer was adopted for phase analysis of the alloys. Optical microscopy, scanning electron microscopy and energy dispersive spectrometer were used to study the effect of the Sb and Ce doping on the microstructure of the solder. Then, the thermal characteristics of alloys were characterized by a differential scanning calorimeter (DSC). Finally, the ultimate tensile strength (UTS), elongation (EL.%) and yield strength (YS) of solder alloys were measured by tensile testing machine.

Findings

With the addition of Sb and Ce, the ß-Sn and intermetallic compounds of solders were refined and distributed more evenly. With the addition of Sb, the UTS, EL.% and YS of Sn-1.0Ag-0.5Cu increased by 15.3%, 46.8% and 16.5%, respectively. The EL.% of Sn-1.0Ag-0.5Cu increased by 56.5% due to Ce doping. When both Sb and Ce elements are added, the EL.% of Sn-1.0Ag-0.5Cu increased by 93.3%.

Originality/value

The addition of 0.5% Sb and 0.07% Ce can obtain better comprehensive performance, which provides a helpful reference for the development of Sn-Ag-Cu lead-free solder.

Details

Soldering & Surface Mount Technology, vol. 36 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Expert briefing
Publication date: 24 May 2024

The 18% increase since the beginning of the year has been fuelled by expectations of monetary easing, recurrent geopolitical tensions, Chinese economic woes, and greater…

Details

DOI: 10.1108/OXAN-DB287239

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 6 May 2024

Shujing Li, Xiaojuan Huang, Zhiheng He, Yongxiang Liu, Hui Qu and Jing Wu

The purpose of this paper is to introduce a double-stator switched reluctance machine (DS-SRM) for electric vehicles (EVs) and to propose multi-mode operations for this machine.

Abstract

Purpose

The purpose of this paper is to introduce a double-stator switched reluctance machine (DS-SRM) for electric vehicles (EVs) and to propose multi-mode operations for this machine.

Design/methodology/approach

Analysis of flux linkage distributions and torque characteristics using finite element method (FEM). Building a dynamic simulation model based on electromagnetic characteristics, mathematical equations and mechanical motion equations of the DS-SRM drive system. The paper proposes multi-mode operations (inner-stator excitation mode, outer-stator excitation mode and double-stator excitation mode) based on motor working regions. It also conducts simulation and experimental results to verify the effectiveness of the proposed multi-mode operations strategies and control schemes.

Findings

There is almost no electromagnetic coupling between the inner and outer stators due to the specially designed rotor structure and optimized windings polarity configuration. Analysis of flux linkage distributions and torque characteristics verified the independence of inner and outer stators. Proposal of multi-mode operations and corresponding control rules achieved the smooth switching between different modes.

Originality/value

The paper introduced the DS-SRM for EVs and proposed multi-mode operations, along with control rules, to optimize its performance. The specially designed rotor structure, optimized winding polarity configuration, and the proposed multi-mode operations contribute to the originality of the research.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2024

Qingli Lu, Ruisheng Sun and Yu Lu

This paper aims to propose and verify an improved cascade active disturbance rejection control (ADRC) scheme based on output redefinition for hypersonic vehicles (HSVs) with…

Abstract

Purpose

This paper aims to propose and verify an improved cascade active disturbance rejection control (ADRC) scheme based on output redefinition for hypersonic vehicles (HSVs) with nonminimum phase characteristic and model uncertainties.

Design/methodology/approach

To handle the nonminimum phase characteristic, a tuning factor stabilizing internal dynamics is introduced to redefine the system output states; its effective range is determined by analyzing Byrnes–Isidori normalized form of the redefined system. The extended state observers (ESOs) are used to estimate the uncertainties, which include matched and mismatched items in the system. The controller compensates observations in real time and appends integral terms to improve robustness against the estimation errors of ESOs.

Findings

Theoretical and simulation results show that the stability of internal dynamics is guaranteed by the tuning factor and the tracking errors of external commands are globally asymptotically stable.

Practical implications

The control scheme in this paper is expected to generate a reliable way for dealing with nonminimum phase characteristic and model uncertainties of HSVs.

Originality/value

In the framework of ADRC, a concise form of redefined outputs is proposed, in which the tuning factor performs a decisive role in stabilizing the internal dynamics of HSVs. By introducing an integral term into the cascade ADRC scheme, the compensation accuracy of matched and mismatched disturbances is improved.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 May 2024

Septantri Shinta Wulandari, Nana Suryapermana, Anis Fauzi and Bambang Dwi Suseno

Through the development of an empirical model and using community sport organizations (CSOs) as the basis for intervening variables, this study aims to ascertain the impact of…

Abstract

Purpose

Through the development of an empirical model and using community sport organizations (CSOs) as the basis for intervening variables, this study aims to ascertain the impact of Muslim household consumption, sport development officers (SDOs) and CSOs on Islamic sport development (ISD) during the COVID-19 pandemic.

Design/methodology/approach

All of the sports branch managers in Banten Province make up the study’s sample. Non-probability sampling with a purposive sampling strategy was the sampling method used. Making use of a questionnaire to gather data, 275 different sets of data are available for analysis.

Findings

Partial least squares is a tool for technical data analysis. With a t-statistic value of 71.358, the Moslem household consumption construct had a favorable and significant impact on the SDO construct. With a t-statistic value of 1.111, the Moslem household consumption construct had a positive but not statistically significant impact on ISD.

Originality/value

With a t-statistic value of 3.926, the Moslem household consumption construct had a positive and statistically significant impact on CSOs. With a t-statistic value of 1.111, the SDO construct had a positive and statistically significant impact on ISD. This study makes a new contribution by providing practical recommendations for the relationship between ISD authorities, community sports organizations and the positive and substantial impact on the development of the community and ISD.

Details

Journal of Islamic Marketing, vol. 15 no. 6
Type: Research Article
ISSN: 1759-0833

Keywords

1 – 10 of 54