Search results

1 – 10 of 10
Article
Publication date: 9 January 2024

Ning Chen, Zhenyu Zhang and An Chen

Consequence prediction is an emerging topic in safety management concerning the severity outcome of accidents. In practical applications, it is usually implemented through…

Abstract

Purpose

Consequence prediction is an emerging topic in safety management concerning the severity outcome of accidents. In practical applications, it is usually implemented through supervised learning methods; however, the evaluation of classification results remains a challenge. The previous studies mostly adopted simplex evaluation based on empirical and quantitative assessment strategies. This paper aims to shed new light on the comprehensive evaluation and comparison of diverse classification methods through visualization, clustering and ranking techniques.

Design/methodology/approach

An empirical study is conducted using 9 state-of-the-art classification methods on a real-world data set of 653 construction accidents in China for predicting the consequence with respect to 39 carefully featured factors and accident type. The proposed comprehensive evaluation enriches the interpretation of classification results from different perspectives. Furthermore, the critical factors leading to severe construction accidents are identified by analyzing the coefficients of a logistic regression model.

Findings

This paper identifies the critical factors that significantly influence the consequence of construction accidents, which include accident type (particularly collapse), improper accident reporting and handling (E21), inadequate supervision engineers (O41), no special safety department (O11), delayed or low-quality drawings (T11), unqualified contractor (C21), schedule pressure (C11), multi-level subcontracting (C22), lacking safety examination (S22), improper operation of mechanical equipment (R11) and improper construction procedure arrangement (T21). The prediction models and findings of critical factors help make safety intervention measures in a targeted way and enhance the experience of safety professionals in the construction industry.

Research limitations/implications

The empirical study using some well-known classification methods for forecasting the consequences of construction accidents provides some evidence for the comprehensive evaluation of multiple classifiers. These techniques can be used jointly with other evaluation approaches for a comprehensive understanding of the classification algorithms. Despite the limitation of specific methods used in the study, the presented methodology can be configured with other classification methods and performance metrics and even applied to other decision-making problems such as clustering.

Originality/value

This study sheds new light on the comprehensive comparison and evaluation of classification results through visualization, clustering and ranking techniques using an empirical study of consequence prediction of construction accidents. The relevance of construction accident type is discussed with the severity of accidents. The critical factors influencing the accident consequence are identified for the sake of taking prevention measures for risk reduction. The proposed method can be applied to other decision-making tasks where the evaluation is involved as an important component.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 21 May 2024

Gan Zhan, Zhihua Chen, Zhenyu Zhang, Jigang Zhan, Wentao Yu and Jiehao Li

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking…

Abstract

Purpose

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking control architecture that integrates perception, planning, and motion control.

Design/methodology/approach

Firstly, the proposed dynamic docking control architecture uses laser sensors and a charge-coupled device camera to perceive the pose of the target. The sensor data are mapped to a high-dimensional potential field space and fused to reduce interference caused by detection noise. Next, a new potential function based on multi-dimensional space is developed for docking path planning, which enables the docking mechanism based on Stewart platform to rapidly converge to the target axis of the locking mechanism, which improves the adaptability and terminal docking accuracy of the docking state. Finally, to achieve precise tracking and flexible docking in the final stage, the system combines a self-impedance controller and an impedance control algorithm based on the planned trajectory.

Findings

Extensive simulations and experiments have been conducted to validate the effectiveness of the dynamic docking system and its control architecture. The results indicate that even if the target moves randomly, the system can successfully achieve accurate, stable and flexible dynamic docking.

Originality/value

This research can provide technical guidance and reference for docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 December 2023

Zhenyu Ma, Yupeng Zhang, Xuguang An, Jing Zhang, Qingquan Kong, Hui Wang, Weitang Yao and Qingyuan Wang

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial…

Abstract

Purpose

The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial reference basis for the development of high-performance carbide reinforced FeCrAl alloys with good mechanical and corrosion properties in the future.

Design/methodology/approach

Nano ZrC reinforced FeCrAl alloys were prepared by mechanical alloying and spark plasma sintering. Phases composition, tensile fractography, corrosion morphology and chemical composition of nano ZrC reinforced FeCrAl alloys were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Microhardness and tensile properties of nano ZrC reinforced FeCrAl alloys were investigated by mechanical testing machine and Vickers hardness tester. Electrochemical corrosion properties of nano ZrC reinforced FeCrAl alloys were investigated by electrochemical workstation in 3.5 wt.% NaCl solution.

Findings

The results showed that addition of nano ZrC can effectively improve the mechanical and corrosion properties. However, excessive nano ZrC could decrease the mechanical properties and reduce the corrosion resistance. In all the FeCrAl alloys, FeCrAl–0.6 wt.% ZrC alloy exhibits the optimum mechanical properties with an ultimate tensile strength, elongation and hardness of 990.7 MPa, 24.1% and 335.8 HV1, respectively, and FeCrAl–0.2 wt.% ZrC alloy has a lower corrosion potential (−0.179 V) and corrosion current density (2.099 µA/cm2) and larger pitting potential (0.497 V) than other FeCrAl–ZrC alloys, showing a better corrosion resistance.

Originality/value

Adding proper nano ZrC particles can effectively improve the mechanical and corrosion properties, while the excessive nano ZrC is harmful to the mechanical and corrosion properties of FeCrAl alloys, which provides an instruction to develop high-performance FeCrAl cladding materials.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 March 2024

Mingke Gao, Zhenyu Zhang, Jinyuan Zhang, Shihao Tang, Han Zhang and Tao Pang

Because of the various advantages of reinforcement learning (RL) mentioned above, this study uses RL to train unmanned aerial vehicles to perform two tasks: target search and…

Abstract

Purpose

Because of the various advantages of reinforcement learning (RL) mentioned above, this study uses RL to train unmanned aerial vehicles to perform two tasks: target search and cooperative obstacle avoidance.

Design/methodology/approach

This study draws inspiration from the recurrent state-space model and recurrent models (RPM) to propose a simpler yet highly effective model called the unmanned aerial vehicles prediction model (UAVPM). The main objective is to assist in training the UAV representation model with a recurrent neural network, using the soft actor-critic algorithm.

Findings

This study proposes a generalized actor-critic framework consisting of three modules: representation, policy and value. This architecture serves as the foundation for training UAVPM. This study proposes the UAVPM, which is designed to aid in training the recurrent representation using the transition model, reward recovery model and observation recovery model. Unlike traditional approaches reliant solely on reward signals, RPM incorporates temporal information. In addition, it allows the inclusion of extra knowledge or information from virtual training environments. This study designs UAV target search and UAV cooperative obstacle avoidance tasks. The algorithm outperforms baselines in these two environments.

Originality/value

It is important to note that UAVPM does not play a role in the inference phase. This means that the representation model and policy remain independent of UAVPM. Consequently, this study can introduce additional “cheating” information from virtual training environments to guide the UAV representation without concerns about its real-world existence. By leveraging historical information more effectively, this study enhances UAVs’ decision-making abilities, thus improving the performance of both tasks at hand.

Details

International Journal of Web Information Systems, vol. 20 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

132

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 December 2023

Lingwen wei, Yan Hong and Xianyi Zeng

The purpose of this research is to conduct a theoretical prediction study exploring the effectiveness of different content marketing strategies in expanding the second-hand market…

Abstract

Purpose

The purpose of this research is to conduct a theoretical prediction study exploring the effectiveness of different content marketing strategies in expanding the second-hand market for fashion brands, comparing the costs and risks involved in these strategies in practice.

Design/methodology/approach

First, the expert interview method is employed to extract the content marketing strategies of the fashion second-hand market. Then, a descriptive space that is able to identify various fashion brand images is established. Then, experts' perceptions of the relationships between content marketing strategies and fashion brand image dimensions are obtained through a subjective evaluation procedure. Data of semantic evaluation were quantified and analyzed using the fuzzy logic method.

Findings

When fashion brands expand to the second-hand market, they not only need to focus on improving the individual differentiation of products but also give priority to the quality of products and services and the overall customer experience. Exploring the “social impact strategy” will become an important direction for the development of fashion brands in the future.

Originality/value

The research methodology employed herein exhibits a noteworthy degree of novelty. This study introduces a pioneering theoretical prediction approach utilizing fuzzy logic, marking the inaugural exploration of this emerging and captivating dimension within the context of the study. Simultaneously, the study provides comparative results among content marketing strategies for expanding the fashion second-hand market, offering guidance for market expansion.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1361-2026

Keywords

Article
Publication date: 2 May 2024

Xin Fan, Yongshou Liu, Zongyi Gu and Qin Yao

Ensuring the safety of structures is important. However, when a structure possesses both an implicit performance function and an extremely small failure probability, traditional…

Abstract

Purpose

Ensuring the safety of structures is important. However, when a structure possesses both an implicit performance function and an extremely small failure probability, traditional methods struggle to conduct a reliability analysis. Therefore, this paper proposes a reliability analysis method aimed at enhancing the efficiency of rare event analysis, using the widely recognized Relevant Vector Machine (RVM).

Design/methodology/approach

Drawing from the principles of importance sampling (IS), this paper employs Harris Hawks Optimization (HHO) to ascertain the optimal design point. This approach not only guarantees precision but also facilitates the RVM in approximating the limit state surface. When the U learning function, designed for Kriging, is applied to RVM, it results in sample clustering in the design of experiment (DoE). Therefore, this paper proposes a FU learning function, which is more suitable for RVM.

Findings

Three numerical examples and two engineering problem demonstrate the effectiveness of the proposed method.

Originality/value

By employing the HHO algorithm, this paper innovatively applies RVM in IS reliability analysis, proposing a novel method termed RVM-HIS. The RVM-HIS demonstrates exceptional computational efficiency, making it eminently suitable for rare events reliability analysis with implicit performance function. Moreover, the computational efficiency of RVM-HIS has been significantly enhanced through the improvement of the U learning function.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 September 2023

Maha Khalifa, Haykel Zouaoui, Hakim Ben Othman and Khaled Hussainey

The authors examine the effect of climate risk on accounting conservatism for a sample of listed companies operating in 26 developing countries.

Abstract

Purpose

The authors examine the effect of climate risk on accounting conservatism for a sample of listed companies operating in 26 developing countries.

Design/methodology/approach

The authors employ the Climate Risk Index (CRI) developed by Germanwatch to capture the severity of losses due to extreme weather events at the country level. The authors use different approaches to measure firm-level accounting conservatism.

Findings

The authors find that greater climate risk leads to a lower level of accounting conservatism. The results hold even after using different estimation methods.

Research limitations/implications

Although the authors' analysis is limited to the period 2007–2016, it could be helpful for standard setters such as International Accounting Standards Board (IASB) and International Sustainable Standards Board (ISSB) as they may consider the potential effect of climate risk in their international standards.

Practical implications

The negative impacts of climate risk on the quality of financial reporting as proxied by accounting conservatism could trigger regulators and standard setters to require disclosure of information relating to climate risks and to incorporate climate-related risks in their risk management systems. In addition, for policymakers, incorporating accounting conservatism as a financial quality reporting standard could help promote greater transparency, accuracy and reliability in financial reporting in the context of climate risk.

Originality/value

The authors add to the literature on international differences in accounting conservatism by showing that climate risk significantly affects unconditional and conditional conservatism. The authors' results provide fresh evidence of the dark side of climate change. That is, climate risk is shown to decrease financial reporting quality.

Details

Journal of Applied Accounting Research, vol. 25 no. 3
Type: Research Article
ISSN: 0967-5426

Keywords

1 – 10 of 10