Search results

1 – 10 of 65
Open Access
Article
Publication date: 16 August 2023

Andrea Zani, Alberto Speroni, Andrea Giovanni Mainini, Michele Zinzi, Luisa Caldas and Tiziana Poli

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based…

Abstract

Purpose

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based matrix coupled with a stretchable three-dimensional textile. The paper’s aim is, through a performance-based generative design approach, to develop a high-performance static shading system able to guarantee adequate daylit spaces, a connection with the outdoors and a glare-free environment in the view of a holistic and occupant-centric daylight assessment.

Design/methodology/approach

The paper describes the design and simulation process of a complex static shading system for digital manufacturing purposes. Initially, the optical material properties were characterized to calibrate radiance-based simulations. The developed models were then implemented in a multi-objective genetic optimization algorithm to improve the shading geometries, and their performance was assessed and compared with traditional external louvres and overhangs.

Findings

The system developed demonstrates, for a reference office space located in Milan (Italy), the potential of increasing useful daylight illuminance by 35% with a reduced glare of up to 70%–80% while providing better uniformity and connection with the outdoors as a result of a topological optimization of the shape and position of the openings.

Originality/value

The paper presents the innovative nature of a new composite material that, coupled with the proposed performance-based optimization process, enables the fabrication of optimized shading/cladding surfaces with complex geometries whose formability does not require ad hoc formworks, making the process fast and economic.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 23 May 2023

Kimmo Kettunen, Heikki Keskustalo, Sanna Kumpulainen, Tuula Pääkkönen and Juha Rautiainen

This study aims to identify user perception of different qualities of optical character recognition (OCR) in texts. The purpose of this paper is to study the effect of different…

Abstract

Purpose

This study aims to identify user perception of different qualities of optical character recognition (OCR) in texts. The purpose of this paper is to study the effect of different quality OCR on users' subjective perception through an interactive information retrieval task with a collection of one digitized historical Finnish newspaper.

Design/methodology/approach

This study is based on the simulated work task model used in interactive information retrieval. Thirty-two users made searches to an article collection of Finnish newspaper Uusi Suometar 1869–1918 which consists of ca. 1.45 million autosegmented articles. The article search database had two versions of each article with different quality OCR. Each user performed six pre-formulated and six self-formulated short queries and evaluated subjectively the top 10 results using a graded relevance scale of 0–3. Users were not informed about the OCR quality differences of the otherwise identical articles.

Findings

The main result of the study is that improved OCR quality affects subjective user perception of historical newspaper articles positively: higher relevance scores are given to better-quality texts.

Originality/value

To the best of the authors’ knowledge, this simulated interactive work task experiment is the first one showing empirically that users' subjective relevance assessments are affected by a change in the quality of an optically read text.

Details

Journal of Documentation, vol. 79 no. 7
Type: Research Article
ISSN: 0022-0418

Keywords

Open Access
Article
Publication date: 20 February 2024

Alenka Kavčič Čolić and Andreja Hari

The current predominant delivery format resulting from digitization is PDF, which is not appropriate for the blind, partially sighted and people who read on mobile devices. To…

Abstract

Purpose

The current predominant delivery format resulting from digitization is PDF, which is not appropriate for the blind, partially sighted and people who read on mobile devices. To meet the needs of both communities, as well as broader ones, alternative file formats are required. With the findings of the eBooks-On-Demand-Network Opening Publications for European Netizens project research, this study aims to improve access to digitized content for these communities.

Design/methodology/approach

In 2022, the authors conducted research on the digitization experiences of 13 EODOPEN partners at their organizations. The authors distributed the same sample of scans in English with different characteristics, and in accordance with Web content accessibility guidelines, the authors created 24 criteria to analyze their digitization workflows, output formats and optical character recognition (OCR) quality.

Findings

In this contribution, the authors present the results of a trial implementation among EODOPEN partners regarding their digitization workflows, used delivery file formats and the resulting quality of OCR results, depending on the type of digitization output file format. It was shown that partners using the OCR tool ABBYY FineReader Professional and producing scanning outputs in tagged PDF and PDF/UA formats achieved better results according to set criteria.

Research limitations/implications

The trial implementations were limited to 13 project partners’ organizations only.

Originality/value

This research paper can be a valuable contribution to the field of massive digitization practices, particularly in terms of improving the accessibility of the output delivery file formats.

Details

Digital Library Perspectives, vol. 40 no. 2
Type: Research Article
ISSN: 2059-5816

Keywords

Open Access
Article
Publication date: 31 July 2023

Sara Lafia, David A. Bleckley and J. Trent Alexander

Many libraries and archives maintain collections of research documents, such as administrative records, with paper-based formats that limit the documents' access to in-person use…

Abstract

Purpose

Many libraries and archives maintain collections of research documents, such as administrative records, with paper-based formats that limit the documents' access to in-person use. Digitization transforms paper-based collections into more accessible and analyzable formats. As collections are digitized, there is an opportunity to incorporate deep learning techniques, such as Document Image Analysis (DIA), into workflows to increase the usability of information extracted from archival documents. This paper describes the authors' approach using digital scanning, optical character recognition (OCR) and deep learning to create a digital archive of administrative records related to the mortgage guarantee program of the Servicemen's Readjustment Act of 1944, also known as the G.I. Bill.

Design/methodology/approach

The authors used a collection of 25,744 semi-structured paper-based records from the administration of G.I. Bill Mortgages from 1946 to 1954 to develop a digitization and processing workflow. These records include the name and city of the mortgagor, the amount of the mortgage, the location of the Reconstruction Finance Corporation agent, one or more identification numbers and the name and location of the bank handling the loan. The authors extracted structured information from these scanned historical records in order to create a tabular data file and link them to other authoritative individual-level data sources.

Findings

The authors compared the flexible character accuracy of five OCR methods. The authors then compared the character error rate (CER) of three text extraction approaches (regular expressions, DIA and named entity recognition (NER)). The authors were able to obtain the highest quality structured text output using DIA with the Layout Parser toolkit by post-processing with regular expressions. Through this project, the authors demonstrate how DIA can improve the digitization of administrative records to automatically produce a structured data resource for researchers and the public.

Originality/value

The authors' workflow is readily transferable to other archival digitization projects. Through the use of digital scanning, OCR and DIA processes, the authors created the first digital microdata file of administrative records related to the G.I. Bill mortgage guarantee program available to researchers and the general public. These records offer research insights into the lives of veterans who benefited from loans, the impacts on the communities built by the loans and the institutions that implemented them.

Details

Journal of Documentation, vol. 79 no. 7
Type: Research Article
ISSN: 0022-0418

Keywords

Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

2804

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 27 May 2024

Ahmed Elaksher and Bhavana Kotla

Photogrammetry enables scientists and engineers to make accurate and precise measurements from optical images and other patterns of reflected electromagnetic energy…

Abstract

Purpose

Photogrammetry enables scientists and engineers to make accurate and precise measurements from optical images and other patterns of reflected electromagnetic energy. Photogrammetry is taught in surveying, geomatics and similar academic programs. For a long time, it has been observed that there is a lack of diversity and underrepresentation of different groups in the surveying and geomatics workforces for various reasons. Diversity fosters more innovative environments, helps employees be more engaged and boosts productivity rates. Although efforts are being made to solve this problem, most attempts did not significantly improve the diversity issues in this field. To address this problem, we designed a new curriculum for a photogrammetry course, which integrates entrepreneurial mindset (EM), bio-inspired design and Science, Technology, Engineering, Arts and Mathematics (STEAM) into the photogrammetry course for this study.

Design/methodology/approach

In this study, the participatory action research method, Photovoice, was used to gather data. Students were asked to respond to photovoice and metacognitive reflection prompts to understand student perceptions about the importance of Unmanned Aerial Vehicles (UAVs) in photogrammetric mapping. Students were required to respond to each prompt with three pictures and a narrative. These reflections were analyzed using thematic analysis.

Findings

The analysis of the photovoice and metacognitive reflections resulted in six themes: promoting digital literacy, promoting job readiness and awareness, improving perceived learning outcomes, increasing interest in pursuing careers in surveying/geomatics, encouraging learner engagement and increasing awareness of the role of art in map making.

Originality/value

This is the first study conducted at our Hispanic Serving Institution, which specifically designed a curriculum integrating EM, bio-inspired design and STEAM concepts to address diversity issues in surveying and geomatics engineering disciplines.

Details

Journal of Research in Innovative Teaching & Learning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2397-7604

Keywords

Open Access
Article
Publication date: 6 May 2024

Danusa Silva da Costa, Lucely Nogueira dos Santos, Nelson Rosa Ferreira, Katiuchia Pereira Takeuchi and Alessandra Santos Lopes

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years…

Abstract

Purpose

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years using tools for reviewing the statement of preferred information item for systematic reviews without focusing on a randomized analysis and secondly to perform a bibliometric analysis on the properties of films and coatings added of tocopherol for food packaging.

Design/methodology/approach

On January 24, 2022, information was sought on the properties of films and coatings added of tocopherol for use as food packaging published in PubMed, Science Direct, Scopus and Web of Science databases. Further analysis was performed using bibliometric indicators with the VOSviewer tool.

Findings

The searches returned 33 studies concerning the properties of films and coatings added of tocopherol for food packaging, which were analyzed together for a better understanding of the results. Data analysis using the VOSviewer tool allowed a better visualization and exploration of these words and the development of maps that showed the main links between the publications.

Originality/value

In the area of food science and technology, the development of polymers capable of promoting the extension of the shelf life of food products is sought, so the knowledge of the properties is vital for this research area since combining a biodegradable polymeric material with a natural antioxidant active is of great interest for modern society since they associate environmental preservation with food preservation.

Details

British Food Journal, vol. 126 no. 13
Type: Research Article
ISSN: 0007-070X

Keywords

Open Access
Article
Publication date: 6 May 2024

Mohammed Al Kailani, Aysha Al Dhaheri and Wael Sheta

Interior workspace environments use exclusively artificial light, resulting in a loss of biological connection and natural light quality, as well as greater energy consumption…

Abstract

Purpose

Interior workspace environments use exclusively artificial light, resulting in a loss of biological connection and natural light quality, as well as greater energy consumption. The purpose of the study is to identify a suitable system that can provide natural light to such interior spaces throughout the day while supplementing it with artificial light when necessary. The fundamental aim is to provide insights into the most effective solutions for energy-efficient lighting design in the UAE's environment, with the potential to lower energy consumption related to interior lighting.

Design/methodology/approach

The study adopted an empirical approach to gather and analyze primary data based on field measurements to understand and assess existing lighting conditions, as well as DIALux lighting simulation software to test the efficacy of the proposed HLS in terms of natural light delivery, illumination quality and energy consumption. A branch of a local bank in the United Arab Emirates, situated inside one of the shopping malls where there is no natural light penetration, has been chosen as a case study.

Findings

The findings of comparing the base case to four probable scenarios that used HLS revealed that the third scenario, which uses 100% pure sunshine and 35% artificial LED light during daylight operations and 100% LED light during night duty, is considered to be optimal in terms of illumination quality and energy efficiency.

Originality/value

The study demonstrated the potential of innovative lighting to improve the visual working environment in interior spaces with limited access to direct natural lighting, especially in arid regions, where sunlight is plentiful throughout the year. The study contributes new insights into the establishment of lighting-related recommendations and standards for the UAE context. This may include advice for sustainable construction practices, lighting guidelines or incentives to encourage the use of hybrid lighting technology in commercial and institutional buildings.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 18 April 2024

Joseph Nockels, Paul Gooding and Melissa Terras

This paper focuses on image-to-text manuscript processing through Handwritten Text Recognition (HTR), a Machine Learning (ML) approach enabled by Artificial Intelligence (AI)…

Abstract

Purpose

This paper focuses on image-to-text manuscript processing through Handwritten Text Recognition (HTR), a Machine Learning (ML) approach enabled by Artificial Intelligence (AI). With HTR now achieving high levels of accuracy, we consider its potential impact on our near-future information environment and knowledge of the past.

Design/methodology/approach

In undertaking a more constructivist analysis, we identified gaps in the current literature through a Grounded Theory Method (GTM). This guided an iterative process of concept mapping through writing sprints in workshop settings. We identified, explored and confirmed themes through group discussion and a further interrogation of relevant literature, until reaching saturation.

Findings

Catalogued as part of our GTM, 120 published texts underpin this paper. We found that HTR facilitates accurate transcription and dataset cleaning, while facilitating access to a variety of historical material. HTR contributes to a virtuous cycle of dataset production and can inform the development of online cataloguing. However, current limitations include dependency on digitisation pipelines, potential archival history omission and entrenchment of bias. We also cite near-future HTR considerations. These include encouraging open access, integrating advanced AI processes and metadata extraction; legal and moral issues surrounding copyright and data ethics; crediting individuals’ transcription contributions and HTR’s environmental costs.

Originality/value

Our research produces a set of best practice recommendations for researchers, data providers and memory institutions, surrounding HTR use. This forms an initial, though not comprehensive, blueprint for directing future HTR research. In pursuing this, the narrative that HTR’s speed and efficiency will simply transform scholarship in archives is deconstructed.

Access

Only content I have access to

Year

Last 6 months (65)

Content type

1 – 10 of 65