Search results

1 – 10 of 389
Article
Publication date: 20 January 2023

Leghouchi Abdelghani

This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient…

Abstract

Purpose

This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient emergency action plan for mitigation purposes.

Design/methodology/approach

To achieve the objectives of this study, the hydrodynamic model HEC-RAS 2D was used for the flood routing of the dam-break wave, which gave an estimate of the hydraulic characteristics downstream the Taksebt dam.

Findings

Geospatial analysis of the simulation results conducted in a geographic information system (GIS) environment showed that many residential areas are considered to be in danger in case of the Taksebt dam-break event. Based on the obtained results, an emergency actions plan was suggested to moderate the causalities in the downstream area at risk.

Originality/value

Overall, this study showed that the integration of 2D hydraulic modeling and GIS provides great capabilities in providing realistic view of the dam-break wave propagation that enhances assessing the associated risks and proposing appropriate mitigation measures.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 May 2024

Aun Haider

This paper aims to comprehensively explore techniques for reducing solution time in finite element analysis (FEA), addressing the critical need for expediting computations to…

Abstract

Purpose

This paper aims to comprehensively explore techniques for reducing solution time in finite element analysis (FEA), addressing the critical need for expediting computations to facilitate agile design exploration within project timelines.

Design/methodology/approach

Drawing from a wide array of literature sources, this paper synthesizes and analyzes various methodologies used to enhance the efficiency of FEA. Techniques are scrutinized in terms of their applicability, effectiveness and potential limitations.

Findings

The review signifies application of linear assumptions across multiple facets of analysis and delves into matrix order reduction strategies, geometry simplification, symmetry exploitation, submodeling and mesh attribute control. It reveals how these techniques can effectively reduce computational burdens while maintaining acceptable levels of accuracy.

Research limitations/implications

While this review provides a comprehensive overview of existing efficiency enhancement techniques in FEA, it acknowledges inherent limitations of any synthesis-based study. Future research should focus on refining these methodologies.

Practical implications

The insights provided in this paper offer practical guidance for structural engineers and researchers seeking to optimize FEA workflows. By implementing these techniques, practitioners can expedite solution times and enhance their ability to explore design alternatives efficiently ultimately leading to cost savings and more robust structures.

Originality/value

This review contributes to the existing literature by offering a comprehensive synthesis of efficiency enhancement techniques in FEA. By highlighting the originality and value of each discussed methodology, this paper provides a roadmap for future research and practical implementation in the field of structural engineering.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 August 2023

Faisal Mehraj Wani, Jayaprakash Vemuri and Rajaram Chenna

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault…

Abstract

Purpose

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault Ground Motions (NFGMs), and thus forecasting the dynamic seismic response of structures, using conventional techniques, under such intense ground motions has remained a challenge.

Design/methodology/approach

The present study utilizes a 2D finite element model of an RC structure subjected to near-fault pulse-like ground motions with a focus on the storey drift ratio (SDR) as the key demand parameter. Five machine learning classifiers (MLCs), namely decision tree, k-nearest neighbor, random forest, support vector machine and Naïve Bayes classifier , were evaluated to classify the damage states of the RC structure.

Findings

The results such as confusion matrix, accuracy and mean square error indicate that the Naïve Bayes classifier model outperforms other MLCs with 80.0% accuracy. Furthermore, three MLC models with accuracy greater than 75% were trained using a voting classifier to enhance the performance score of the models. Finally, a sensitivity analysis was performed to evaluate the model's resilience and dependability.

Originality/value

The objective of the current study is to predict the nonlinear storey drift demand for low-rise RC structures using machine learning techniques, instead of labor-intensive nonlinear dynamic analysis.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 March 2024

Qianmai Luo, Chengshuang Sun, Ying Li, Zhenqiang Qi and Guozong Zhang

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the…

Abstract

Purpose

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the application of the modern risk management methods. As an emerging technology, digital twin has already made valuable contributions to safety risk management in many fields. Therefore, exploring the application of digital twin technology in construction safety risk management is of great significance. The purpose of this study is to explore the current research status and application potential of digital twin technology in construction safety risk management.

Design/methodology/approach

This study followed a four-stage literature processing approach as outlined in the systematic literature review procedure guidelines. It then combined the quantitative analysis tools and qualitative analysis methods to organize and summarize the current research status of digital twin technology in the field of construction safety risk management, analyze the application of digital twin technology in construction safety risk management and identify future research trends.

Findings

The research findings indicate that the application of digital twin technology in the field of construction safety risk management is still in its early stages. Based on the results of the literature analysis, this paper summarizes five aspects of digital twin technology's application in construction safety risk management: real-time monitoring and early warning, safety risk prediction and assessment, accident simulation and emergency response, safety risk management decision support and safety training and education. It also proposes future research trends based on the current research challenges.

Originality/value

This study provides valuable references for the extended application of digital twin technology and offers a new perspective and approach for modern construction safety risk management. It contributes to the enhancement of the theoretical framework for construction safety risk management and the improvement of on-site construction safety.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 October 2023

Sisi Zou and Catriona Paisey

The purpose of this paper is to examine the alternative accounts produced by Green Earth Volunteers (GEV), a Chinese environmental non-governmental organisation, over a 10-year…

Abstract

Purpose

The purpose of this paper is to examine the alternative accounts produced by Green Earth Volunteers (GEV), a Chinese environmental non-governmental organisation, over a 10-year period in the context of their campaign to create visibilities about hydroelectric dam projects along the Chang Jiang.

Design/methodology/approach

Drawing on conceptions of the human–nature relationship, including those evident in ancient Chinese philosophy and mythology, and the Chinese way of viewing and resolving conflict, this paper offers an interpretive analysis of the alternative accounts of GEV in terms of their form and content.

Findings

In terms of their content, the alternative accounts reflect elements of interrelated thinking, being underpinned by a recognition of the relationship between humans and nature, which is evident in Confucianism, Taoism and ancient Chinese mythology. The strategies adopted by GEV are a non-confrontational but feasible way to promote their ecological beliefs in the Chinese context.

Practical implications

The study suggests that social and environmental accounting (SEA) in developing countries is steeped in local cultural and philosophical traditions that need to be considered and incorporated into the design of alternative accounts.

Originality/value

The study contributes to the very limited literature that offers qualitative analyses of SEA in developing countries.

Details

Accounting, Auditing & Accountability Journal, vol. 37 no. 4
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 7 May 2024

Irina Alexandra Georgescu, Simona Vasilica Oprea and Adela Bâra

In this paper, we aim to provide an extensive analysis to understand how various factors influence electricity prices in competitive markets, focusing on the day-ahead electricity…

Abstract

Purpose

In this paper, we aim to provide an extensive analysis to understand how various factors influence electricity prices in competitive markets, focusing on the day-ahead electricity market in Romania.

Design/methodology/approach

Our study period began in January 2019, before the COVID-19 pandemic, and continued for several months after the onset of the war in Ukraine. During this time, we also consider other challenges like reduced market competitiveness, droughts and water scarcity. Our initial dataset comprises diverse variables: prices of essential energy sources (like gas and oil), Danube River water levels (indicating hydrological conditions), economic indicators (such as inflation and interest rates), total energy consumption and production in Romania and a breakdown of energy generation by source (coal, gas, hydro, oil, nuclear and renewable energy sources) from various data sources. Additionally, we included carbon certificate prices and data on electricity import, export and other related variables. This dataset was collected via application programming interface (API) and web scraping, and then synchronized by date and hour.

Findings

We discover that the competitiveness significantly affected electricity prices in Romania. Furthermore, our study of electricity price trends and their determinants revealed indicators of economic health in 2019 and 2020. However, from 2021 onwards, signs of a potential economic crisis began to emerge, characterized by changes in the normal relationships between prices and quantities, among other factors. Thus, our analysis suggests that electricity prices could serve as a predictive index for economic crises. Overall, the Granger causality findings from 2019 to 2022 offer valuable insights into the factors driving energy market dynamics in Romania, highlighting the importance of economic policies, fuel costs and environmental regulations in shaping these dynamics.

Originality/value

We combine principal component analysis (PCA) to reduce the dataset’s dimensionality. Following this, we use continuous wavelet transform (CWT) to explore frequency-domain relationships between electricity price and quantity in the day-ahead market (DAM) and the components derived from PCA. Our research also delves into the competitiveness level in the DAM from January 2019 to August 2022, analyzing the Herfindahl-Hirschman index (HHI).

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 April 2024

Brandon A. Smith and Karen E. Watkins

The purpose of this review is to evaluate existing learning agility measures and offer recommendations for their use in organizational and scholarly contexts.

Abstract

Purpose

The purpose of this review is to evaluate existing learning agility measures and offer recommendations for their use in organizational and scholarly contexts.

Design/methodology/approach

This is a general review paper assessing the psychometric qualities of prevalent learning agility measures. Measures were selected based on their predominance and use in the learning agility literature and organizational settings.

Findings

Learning agility measurement is an area requiring further research. Multiple conceptualizations of learning agility exist, making the true structure of learning agility unclear. The learning agility measures in the academic literature deviate from learning agility’s traditional conceptualization and require further validation and convergent validity studies. Commercial measures of learning agility exist, but their development procedures are not subjected to peer review and are not widely used in academic research, given the cost associated with their use.

Practical implications

Learning agility is prevalently used in organizational settings and is receiving increased scholarly attention. Various conceptualizations and measurement tools exist, and it is unclear how these theories and measures relate and differ. This paper contributes to practice by providing practical guidelines and limitations for measuring learning agility.

Originality/value

Learning agility was initially conceived as a multidimensional construct comprising people agility, results agility, change agility and mental agility. As the construct has evolved, the dimension structure of the measure has evolved as well. This study addresses a gap in our current understanding of how to conceptualize and measure learning agility.

Details

Personnel Review, vol. 53 no. 3
Type: Research Article
ISSN: 0048-3486

Keywords

Book part
Publication date: 28 March 2024

Julianna M. Trammel

This research analyzes the alignment of story framing between Samarco and news media following the dam disaster in Minas Gerais in November 2015. Drawing on framing theory as the…

Abstract

This research analyzes the alignment of story framing between Samarco and news media following the dam disaster in Minas Gerais in November 2015. Drawing on framing theory as the underlying impetus, the study seeks to answer five major questions: RQ1: How did Samarco frame the mining tragedy in the aftermath of the dam collapse? RQ2: How did the news media frame the mining tragedy in the aftermath of the dam collapse? RQ3: Did the frames presented by Samarco and news media coincide? RQ4: Did the frames presented by Samarco and news media contradict? RQ5: What can be observed about the information flow and interaction between news media and the general public on social media? From a methods perspective, the study uses comparative textual analysis and NodeXL social network visualization to analyze the discourse around Samarco and information flow on social media in the aftermath of the tragedy. The results show that, while some social media content served as a forum for expressions of empathy toward survivors, social media content on Twitter mostly delivered a one-sided and positive view of the firm’s actions.

Details

Geo Spaces of Communication Research
Type: Book
ISBN: 978-1-80071-606-3

Keywords

Book part
Publication date: 19 March 2024

Catherine Sandoval and Patrick Lanthier

This chapter analyzes the link between the digital divide, infrastructure regulation, and disaster planning and relief through a case study of the flood in San Jose, California…

Abstract

This chapter analyzes the link between the digital divide, infrastructure regulation, and disaster planning and relief through a case study of the flood in San Jose, California triggered by the Anderson dam’s overtopping in February 2017 and an examination of communication failures during the 2018 wildfire in Paradise, California. This chapter theorizes that regulatory decisions construct social and disaster vulnerability. Rooted in the Whole Community approach to disaster planning and relief espoused by the United Nations and the Federal Emergency Management Agency, this chapter calls for leadership to end the digital divide. It highlights the imperative of understanding community information needs and argues for linking strategies to close the digital divide with infrastructure and emergency planning. As the Internet’s integration into society increases, the digital divide diminishes access to societal resources including disaster aid, and exacerbates wildfire, flood, pandemic, and other risks. To mitigate climate change, climate-induced disaster, protect access to social services and the economy, and safeguard democracy, it argues for digital inclusion strategies as a centerpiece of community-centered infrastructure regulation and disaster relief.

Details

Technology vs. Government: The Irresistible Force Meets the Immovable Object
Type: Book
ISBN: 978-1-83867-951-4

Keywords

1 – 10 of 389