Search results

1 – 4 of 4
Article
Publication date: 10 May 2024

Xiao Xiao, Andreas Christian Thul, Lars Eric Müller and Kay Hameyer

Magnetic hysteresis holds significant technical and physical importance in the design of electromagnetic components. Despite extensive research in this area, modeling magnetic…

Abstract

Purpose

Magnetic hysteresis holds significant technical and physical importance in the design of electromagnetic components. Despite extensive research in this area, modeling magnetic hysteresis remains a challenging task that is yet to be fully resolved. The purpose of this paper is to study vector hysteresis play models for anisotropic ferromagnetic materials in a physical, thermodynamical approach.

Design/methodology/approach

In this work, hysteresis play models are implemented to interpret magnetic properties, drawing upon classical rate-independent plasticity principles derived from continuum mechanics theory. By conducting qualitative and quantitative verification and validation, various aspects of ferromagnetic vector hysteresis were thoroughly examined. By directly incorporating the hysteresis play models into the primal formulations using fixed point method, the proposed model is validated with measurements in a finite element (FE) environments.

Findings

The proposed vector hysteresis play model is verified with fundamental properties of hysteresis effects. Numerical analysis is performed in an FE environment. Measured data from a rotational single sheet tester (RSST) are validated to the simulated results.

Originality/value

The results of this work demonstrates that the essential properties of the hysteresis effects by electrical steel sheets can be represented by the proposed vector hysteresis play models. By incorporation of hysteresis play models into the weak formulations of the magnetostatic problem in the h-based magnetic scalar potential form, magnetic properties of electrical steel sheets can be locally analyzed and represented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 2 November 2023

Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost and Bai-Xiang Xu

Confronting the unveiled sophisticated structural and physical characteristics of permanent magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a…

Abstract

Purpose

Confronting the unveiled sophisticated structural and physical characteristics of permanent magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a simulation scheme that can link physics-based micromagnetics on the nanostructures and magnetostatic homogenization on the mesoscale polycrystalline structures.

Design/methodology/approach

The simulation scheme is arranged in a multiscale fashion. The magnetization behaviors on the nanostructures examined with various orientations are surrogated as the micromagnetic-informed hysterons. The hysteresis behavior of the mesoscale polycrystalline structures with micromagnetic-informed hysterons is then evaluated by computational magnetostatic homogenization.

Findings

The micromagnetic-informed hysterons can emulate the magnetization reversal of the parameterized Sm-Co nanostructures as the local hysteresis behavior on the mesostructures. The simulation results of the mesoscale polycrystal demonstrate that the demagnetization process starts from the grain with the largest orientation angle (a) and then propagates to the surrounding grains.

Research limitations/implications

The presented scheme depicts the demand for integrating data-driven methods, as the parameters of the surrogate hysteron intrinsically depend on the nanostructure and its orientation. Further hysteron parameters that help the surrogate hysteron emulate the micromagnetic-simulated magnetization reversal should be examined.

Originality/value

This work provides a novel multiscale scheme for simulating the polycrystalline permanent magnets’ hysteresis while recapitulating the nanoscale mechanisms, such as the nucleation of domains, and domain wall migration and pinning. This scheme can be further extended to simulate the part-level hysteresis considering the mesoscale features.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 28 February 2023

Dennis Albert, Lukas Daniel Domenig, Philipp Schachinger, Klaus Roppert and Herwig Renner

The purpose of this paper is to investigate the applicability of a direct current (DC) hysteresis measurement on power transformer terminals for the subsequent hysteresis model…

Abstract

Purpose

The purpose of this paper is to investigate the applicability of a direct current (DC) hysteresis measurement on power transformer terminals for the subsequent hysteresis model parametrization in transformer grey box topology models.

Design/methodology/approach

Two transformer topology models with two different hysteresis models are used together with a DC hysteresis measurement via the power transformer terminals to parameterize the hysteresis models by means of an optimization. The calculated current waveform with the derived model in the transformer no-load condition is compared to the measured no-load current waveforms to validate the model.

Findings

The proposed DC hysteresis measurement via the power transformer terminals is suitable to parametrize two hysteresis models implemented in transformer topology models to calculate the no-load current waveforms.

Originality/value

Different approaches for the measurement and utilization of transformer terminal measurements for the hysteresis model parametrization are discussed in literature. The transformer topology models, derived with the presented approach, are able to reproduce the transformer no-load current waveform with acceptable accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 December 2023

Abdelazeem Hassan Shehata Atyia and Abdelrahman Mohamed Ghanim

The accurate modeling of magnetic hysteresis in electrical steels is important in several electrical and electronic applications. Numerical models have long been known that can…

Abstract

Purpose

The accurate modeling of magnetic hysteresis in electrical steels is important in several electrical and electronic applications. Numerical models have long been known that can correctly reproduce some typical behaviours of these magnetic materials. Among these, the model proposed by Jiles and Atherton must certainly be mentioned. This model is intuitive and fairly easy to implement and identify with relatively few experimental data. Also, for this reason, it has been extensively studied in different formulations. The developments and numerical tests made on this hysteresis model have indicated that it is able to accurately reproduce symmetrical cycles, especially the major loop, but often it fails to reproduce non-symmetrical cycles. This paper aims to show the positive aspects and highlight the defects of the different formulations in predicting the minor loops of electrical steels excited by non-sinusoidal currents.

Design/methodology/approach

The different formulations are applied to different electrical steels, and the data coming from the simulations are compared with those measured experimentally. The direct and inverse Jiles–Atherton models, including the introduction of the dissipative factor approach, are presented, and their limitations are proposed and validated using the measurements of three non-grain-oriented materials. Only the measured major loop is used to identify the parameters of the Jiles–Atherton model. Furthermore, the direct and inverse Jiles–Atherton models were used to simulate the minor loops as well as the hysteresis cycles with direct component (DC) bias excitation. Finally, the simulation results are discussed and compared to measurements for each study case.

Findings

The paper indicates that both the direct and the inverse Jiles–Atherton model formulations provide a good agreement with the experimental data for the major loop representation; nevertheless, both models can not accurately predict the minor loops even when the modification approaches proposed in the literature were implemented.

Originality/value

The Jiles–Atherton model and its modifications are widely discussed in the literature; however, some limitations of the model and its modification in the case of the distorted current waveform are not completely highlighted. Furthermore, this paper contains an original discussion on the accuracy of the prediction of minor loops from distorted current waveforms, including DC bias.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 4 of 4