Search results

1 – 3 of 3
Article
Publication date: 13 June 2024

Hamza Sayyou, Jabrane Belabid, Hakan F. Öztop and Karam Allali

The purpose of this paper is to investigate the effects of gravitational modulation on natural convection in a square inclined porous cavity filled by a fluid containing copper…

Abstract

Purpose

The purpose of this paper is to investigate the effects of gravitational modulation on natural convection in a square inclined porous cavity filled by a fluid containing copper nanoparticles.

Design/methodology/approach

The present study uses a system of equations that couple hydrodynamics to heat transfer, representing the governing equations of fluid flow in a square domain. The Boussinesq–Darcy flow with Cu-water nanofluid is considered. The dimensionless partial differential equations are solved numerically using finite difference method based on alternating direction implicit scheme. The cavity is differentially heated by constant heat flux, while the top and bottom walls are insulated. The authors examined the effects of gravity amplitude (λ), vibration frequency (σ), tilt angle (α) and Rayleigh number (Ra) on flow and temperature.

Findings

The numerical simulations, in the form of streamlines, isotherms, Nusselt number and maximum stream function for different values of amplitude, frequency, tilt angle and Rayleigh number, have revealed an oscillatory behavior in the development of flow and temperature under gravity modulation. An increase of amplitude from 0.5 to 1 intensifies the flow stream (from |ψmax| = 21.415 to |ψmax| = 25.262) and improves heat transfer (from Nu¯ = 17.592 to Nu¯ = 20.421). Low-frequency vibration below 50 has a significant impact on the flow and thermal distributions. However, once this threshold is exceeded, the flow weakens, leading to a gradual decrease in heat transfer rate. The inclination angle is an effective parameter for controlling the flow and temperature characteristics. Thus, transitioning the tilt angle from 30° to 60° can increase the flow velocity (from 22.283 to 23.288) while reducing the Nusselt number (from 16.603 to 13.874). Therefore, by manipulating the combination of vibration and inclination, it is founded that for a fixed frequency value of σ = 100 and for increased amplitude (from 0.5 to 1), the flow intensity at inclination of 60° is boosted, and an increase of the heat transfer rate at inclination of 30° is also observed. Convective thermal instabilities may arise depending on the different key factors.

Originality/value

To the best of the authors’ knowledge, this study is original in its examination of the combined effects of modulated gravity and cavity inclination on free convection in nanofluid porous media. It highlights the crucial roles of these two important factors in influencing flow and heat transfer properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 May 2024

Dongfei Li, Hongtao Wang and Ning Dai

This paper aims to propose a method for automatic design of additive manufacturing (AM) flow channel paths driven by path length and pressure loss. The research focuses on the…

Abstract

Purpose

This paper aims to propose a method for automatic design of additive manufacturing (AM) flow channel paths driven by path length and pressure loss. The research focuses on the automatic design of channel paths, intending to achieve the shortest flow channel length or minimum pressure loss and improve the design efficiency of AM parts.

Design/methodology/approach

The initial layout of the flow channels is redesigned to consider the channels print supports. Boundary conditions and constraints are defined according to the redesigned channels layout, and the equation consisting of channel length and pressure loss is used as the objective function. Then the path planning simulation is performed based on particle swarm algorithm. The proposed method describes the path of flow channels using spline cures. The spline curve is controlled by particle (one particle represents a path), and the particle is randomly generated within the design space. After the path planning simulation is completed, the generated paths are used to create 3D parts.

Findings

Case study 1 demonstrates the automatic design of hydraulic spool valve. Compared to conventional spool valve, the pressure loss was reduced by 86% and the mass was reduced by 83%. The design results of case study 2 indicate that this approach is able to find the shortest channel path with lower computational cost.

Originality/value

The automatic design method of flow channel paths driven by path length and pressure loss presented in this paper provides a novel solution for the creation of AM flow components.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 June 2024

Syed Modassir Hussain, Rohit Sharma, Manoj Kumar Mishra and Jitendra Kumar Singh

Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to…

Abstract

Purpose

Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to scrutinize the heat transmission features of magnetohydrodynamic (MHD) honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts.

Design/methodology/approach

Mass, energy and momentum preservation laws are assumed to find the mathematical model. A set of unified ordinary differential equations with nonlinear behavior is used to express the correlated partial differential equations of the established models, adopting a reasonable similarity adjustment. An approximate convergent numerical solution to these equations is evaluated by the shooting scheme with the Runge–Kutta–Fehlberg (RKF45) technique.

Findings

The impression of pertinent evolving parameters on the temperature, fluid velocity, entropy generation, skin friction coefficients and the heat transference rate is explored. Further, the significance of the irreversibility nature of heat transfer due to evolving flow parameters are evaluated. It is noted that the heat transference rate performance is improved due to the imposition of the allied magnetic field, Joule dissipation, heat absorption, squeezing and thermal buoyancy parameters. The entropy generation upsurges due to rising magnetic field strength while its intensification is declined by enhancing the porosity parameter.

Originality/value

The uniqueness of this research work is the numerical evaluation of MHD honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts. Furthermore, regression models are devised to forecast the correlation between the rate of thermal heat transmission and persistent flow parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last month (3)

Content type

Earlycite article (3)
1 – 3 of 3