Search results

1 – 5 of 5
Article
Publication date: 3 April 2024

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic…

Abstract

Purpose

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic (MHD) nanofluid flow within these systems.

Design/methodology/approach

The research uses a constraint-based approach to analyze the impact of geometric shapes on heat transfer and irreversibility. Two equivalent systems, a square cavity and a circular cavity, are examined, considering identical heating/cooling lengths and fluid flow volume. The analysis includes parameters such as magnetic field strength, nanoparticle concentration and accompanying irreversibility.

Findings

This study reveals that circular geometry outperforms square geometry in terms of heat flow, fluid flow and heat transfer. The equivalent circular thermal system is more efficient, with heat transfer enhancements of approximately 17.7%. The corresponding irreversibility production rate is also higher, which is up to 17.6%. The total irreversibility production increases with Ra and decreases with a rise in Ha. However, the effect of magnetic field orientation (γ) on total EG is minor.

Research limitations/implications

Further research can explore additional geometric shapes, orientations and boundary conditions to expand the understanding of thermal performance in different configurations. Experimental validation can also complement the numerical analysis presented in this study.

Originality/value

This research introduces a constraint-based approach for evaluating heat transport and irreversibility in MHD nanofluid flow within square and circular thermal systems. The comparison of equivalent geometries and the consideration of constraint-based analysis contribute to the originality and value of this work. The findings provide insights for designing optimal thermal systems and advancing MHD nanofluid flow control mechanisms, offering potential for improved efficiency in various applications.

Graphical Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2024

Mengyao Fan, Xiaojing Ma, Lin Li, Xinpeng Xiao and Can Cheng

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle…

Abstract

Purpose

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle hydrodynamics (SPH) method. The purpose of this paper is to present the mechanism of the water treatment problem of the falling film evaporation for the high salinity mine water in Xinjiang region of China.

Design/methodology/approach

To effectively characterize the phase transition problem, the particle splitting and merging techniques are introduced. And the particle absorbing layer is proposed to improve the nonphysical aggregation phenomenon caused by the continuous splitting of gas phase particles. The multiresolution model and the artificial viscosity are adopted.

Findings

The SPH model is validated qualitatively with experiment results and then applied to the evaporation of the droplet impact on the liquid film. It is shown that the larger single droplet initial velocity and the smaller single droplet initial temperature difference between the droplet and liquid film improve the liquid film evaporation. The heat transfer effect of a single droplet is preferable to that of multiple droplets.

Originality/value

A multiphase SPH model for evaporation after the droplet impact on the liquid film is developed and validated. The effects of different factors on liquid film evaporation, including single droplet initial velocity, single droplet initial temperature and multiple droplets are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 June 2024

Majid Amin, Fuad A. Awwad, Emad A.A. Ismail, Muhammad Ishaq, Taza Gul and Tahir Saeed Khan

(1) A mathematical model for the Hybrid nanofluids flow is used as carriers for delivering drugs. (2) The flow conditions are controlled to enable drug-loaded nanofluids to flow…

Abstract

Purpose

(1) A mathematical model for the Hybrid nanofluids flow is used as carriers for delivering drugs. (2) The flow conditions are controlled to enable drug-loaded nanofluids to flow through the smaller gap between the two tubes. (3) Hybrid nanofluids (HNFs) made from silver (Ag) and titanium dioxide (TiO2) nanoparticles are analyzed for applications of drug delivery. (Ag) and (TiO2) (NPs) are suitable candidates for cancer treatment due to their excellent biocompatibility, high photoactivity, and low toxicity. (4) The new strategy of artificial neural networks (ANN) is used which is machine-based and more prominent in validation, and comparison with other techniques.

Design/methodology/approach

The two Tubes are settled in such a manner that the gap between them is uniform. The Control Volume Finite Element Method; Rk-4 and Artificial Neural Network (ANN).

Findings

(1) From the obtained results it is observed that the dispersion and distribution of drug-loaded nanoparticles within the body will be improved by the convective motion caused by hybrid nanofluids. The effectiveness and uniformity of drug delivery to target tissues or organs is improved based on the uniform flow and uniform gap. (2) The targeting efficiency of nanofluids is further improved with the addition of the magnetic field. (3) The size of the cylinders, and flow rate, are considered uniform to optimize the drug delivery.

Research limitations/implications

(1)The flow phenomena is considered laminar, one can use the same idea through a turbulent flow case. (2) The gap is considered uniform and will be interesting if someone extends the idea as non-uniform.

Practical implications

(1) To deliver drugs to the targeted area, a suitable mathematical model is required. (2) The analysis of hybrid nanofluids (HNFs) derived from silver (Ag) and titanium dioxide (TiO2) nanoparticles is conducted for the purpose of drug delivery. The biocompatibility, high photoactivity, and low toxicity of (Ag) and (TiO2) (NPs) make them ideal candidates for cancer treatment. (3) Machine-based artificial neural networks (ANN) have a new strategy that is more prominent in validation compared to other techniques.

Social implications

The drug delivery model is a useful strategy for new researchers. (1) They can extend this idea using a non-uniform gap. (2) The flow is considered uniform, the new researchers can extend the idea using a turbulent case. (3) Other hybrid nanofluids flow, in the same model for other industrial usages are possible.

Originality/value

All the obtained results are new. The experimental thermophysical results are used from the existing literature and references are provided.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 May 2024

Manjeet Kumar, Pradeep Kaswan and Manjeet Kumari

The purpose of this paper is to showcase the utilization of the magnetohydrodynamics-microrotating Casson’s nanofluid flow model (MHD-MRCNFM) in examining the impact of an…

Abstract

Purpose

The purpose of this paper is to showcase the utilization of the magnetohydrodynamics-microrotating Casson’s nanofluid flow model (MHD-MRCNFM) in examining the impact of an inclined magnetic field within a porous medium on a nonlinear stretching plate. This investigation is conducted by using neural networking techniques, specifically using neural networks-backpropagated with the Levenberg–Marquardt scheme (NN-BLMS).

Design/methodology/approach

The initial nonlinear coupled PDEs system that represented the MRCNFM is transformed into an analogous nonlinear ODEs system by the adoption of similarity variables. The reference data set is created by varying important MHD-MRCNFM parameters using the renowned Lobatto IIIA solver. The numerical reference data are used in validation, testing and training sets to locate and analyze the estimated outcome of the created NN-LMA and its comparison with the corresponding reference solution. With mean squared error curves, error histogram analysis and a regression index, better performance is consistently demonstrated. Mu is a controller that controls the complete training process, and the NN-BLMS mainly concentrates on the higher precision of nonlinear systems.

Findings

The peculiar behavior of the appropriate physical parameters on nondimensional shapes is demonstrated and explored via sketches and tables. For escalating amounts of inclination angle and Brinkman number, a viable entropy profile is accomplished. The angular velocity curve grows as the rotation viscosity and surface condition factors rise. The dominance of friction-induced irreversibility is observed in the vicinity of the sheet, whereas in the farthest region, the situation is reversed with heat transfer playing a more significant role in causing irreversibilities.

Originality/value

To improve the efficiency of any thermodynamic system, it is essential to identify and track the sources of irreversible heat losses. Therefore, the authors analyze both flow phenomena and heat transport, with a particular focus on evaluating the generation of entropy within the system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 June 2024

Ankita Bisht and Sanjalee Maheshwari

The purpose of this article is to present a mathematical model for the fully developed flow of Bi-viscous Bingham nanofluid through a uniform-width anisotropic porous channel. The…

16

Abstract

Purpose

The purpose of this article is to present a mathematical model for the fully developed flow of Bi-viscous Bingham nanofluid through a uniform-width anisotropic porous channel. The model incorporates a generalized Brinkman-Darcy formulation for the porous layers while considering the motion of nanoparticles influenced by both Brownian diffusion and thermophoresis effects.

Design/methodology/approach

The similarity transformations derived through Lie group analysis are used to reduce the system from nonlinear partial differential equations to nonlinear ordinary differential equations. The finite difference method-based numerical routine bvp4c is employed to collect and graphically present the outcomes for velocity, temperature, and nanoparticle concentration profiles. The flow pattern is analyzed through streamlined plots. Furthermore, skin friction, heat, and mass transmission rates are investigated and presented via line plots.

Findings

It is observed that in anisotropic porous media, the temperature profile is stronger than in isotropic porous media. The thermal anisotropic parameter enhances the concentration profile while reducing the temperature.

Practical implications

Anisotropy arises in various industrial and natural systems due to factors such as preferred orientation or asymmetric geometry of fibers or grains. Hence, this study has applications in oil extraction processes, certain fibrous and biological materials, geological formations, and dendritic zones formed during the solidification of binary alloys.

Originality/value

1. The permeability and thermal conductivity are not constant; instead, they have different values in the x and y directions. 2. This study considers the dependency of thermophoresis on nanoparticle volume fraction and Brownian diffusion on the temperature in both the fluid flow equations and boundary conditions. 3. A novel similarity transformation is derived using Lie group analysis instead of using an existing transformation already available in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Access

Year

Last 3 months (5)

Content type

Earlycite article (5)
1 – 5 of 5