Search results

1 – 10 of 65
Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 21 March 2023

Abdelmoumene Djabi

The paper presents a mathematical problem involving quasistatic contact between a thermo-electro-viscoelastic body and a lubricated foundation, where the contact is described…

Abstract

Purpose

The paper presents a mathematical problem involving quasistatic contact between a thermo-electro-viscoelastic body and a lubricated foundation, where the contact is described using a version of Coulomb’s law of friction that includes normal damped response conditions and heat exchange with a conductive foundation. The constitutive law for the material is thermo-electro-viscoelastic. The problem is formulated as a system that includes a parabolic equation of the first kind for the temperature, an evolutionary elliptic quasivariational inequality for the displacement and a variational elliptic equality for the electric stress. The author establishes the existence of a unique weak solution to the problem by utilizing classical results for evolutionary quasivariational elliptic inequalities, parabolic differential equations and fixed point arguments.

Design/methodology/approach

The author establishes a variational formulation for the model and proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.

Findings

The author proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.

Originality/value

The author studies a mathematical problem between a thermo-electro-viscoelastic body and a lubricated foundation using a version of Coulomb’s law of friction including the normal damped response conditions and the heat exchange with a conductive foundation, which is original and requires a good understanding of modeling and mathematical tools.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 30 May 2024

Liang Wang, Shoukun Wang and Junzheng Wang

Mobile robots with independent wheel control face challenges in steering precision, motion stability and robustness across various wheel and steering system types. This paper aims…

Abstract

Purpose

Mobile robots with independent wheel control face challenges in steering precision, motion stability and robustness across various wheel and steering system types. This paper aims to propose a coordinated torque distribution control approach that compensates for tracking deviations using the longitudinal moment generated by active steering.

Design/methodology/approach

Building upon a two-degree-of-freedom robot model, an adaptive robust controller is used to compute the total longitudinal moment, while the robot actuator is regulated based on the difference between autonomous steering and the longitudinal moment. An adaptive robust control scheme is developed to achieve accurate and stable generation of the desired total moment value. Furthermore, quadratic programming is used for torque allocation, optimizing maneuverability and tracking precision by considering the robot’s dynamic model, tire load rate and maximum motor torque output.

Findings

Comparative evaluations with autonomous steering Ackermann speed control and the average torque method validate the superior performance of the proposed control strategy, demonstrating improved tracking accuracy and robot stability under diverse driving conditions.

Research limitations/implications

When designing adaptive algorithms, using models with higher degrees of freedom can enhance accuracy. Furthermore, incorporating additional objective functions in moment distribution can be explored to enhance adaptability, particularly in extreme environments.

Originality/value

By combining this method with the path-tracking algorithm, the robot’s structural path-tracking capabilities and ability to navigate a variety of difficult terrains can be optimized and improved.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 December 2023

Indranil Banik, Arup Kumar Nandi and Bittagopal Mondal

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road…

Abstract

Purpose

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road conditions do not exhibit excessive variations. This will intend for an appropriate allocation of brake force distribution (BFD) to provide dynamic stability to the vehicle during braking.

Design/methodology/approach

Two techniques are presented (with and without wheel slip) to satisfy both brake stability and performance while accommodating variations in load sharing and road friction coefficient. Based on parametric optimization of the design variables of hydraulic brake using evolutionary algorithm, taking into account both the laden and unladen circumstances simultaneously, this research develops an improved model for computing and simulating the BFD applied to commercial and passenger vehicles.

Findings

The optimal parameter values defining the braking system have been identified, resulting in effective β = 0.695 which enhances the brake forces at respective axles. Nominal slip of 3.42% is achieved with maximum deceleration of 5.72 m/s2 maintaining directional stability during braking. The results obtained from both the methodologies are juxtaposed and assessed governing the vehicle stability in straight line motion to prevent wheel lock.

Originality/value

Optimization results establish the practicality, efficacy and applicability of the proposed approaches. The findings provide valuable insights for the design and optimization of hydraulic drum brake systems in modern automobiles, which can lead to safer and more efficient braking systems.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 May 2024

Wenchao Zhang, Enming Cui, Cheng Wang, Baoquan Zhang, Jiwei Jin, Pengfei Zhang, Wending Wu and Mingwei Wang

An investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material…

Abstract

Purpose

An investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material removal and crack formation, through the use of ultrasonic-assisted grinding.

Design/methodology/approach

A mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. A series of simulations and experiments were conducted to investigate the impact of process parameters on crack depth, surface roughness, and surface topography during ultrasonic-assisted surface and axial grinding. Additionally, the mechanism of crack formation was explored.

Findings

During ultrasonic-assisted grinding, the average grinding forces are between 0.4–1.0 N, which is much smaller than that of ordinary grinding (1.0–3.5 N). In surface grinding, the maximum surface stresses between the workpiece and the tool gradually decrease with the tool speed. The surface stresses of the workpiece increase with the grinding depth, and the depth of subsurface cracks increases with the grinding depth. With the increase of the axial grinding speed, the subsurface damage depth increases. The roughness increases from 0.780um/1.433um.

Originality/value

A mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. The deformation involved in the grinding process is large, and the FEM-SPH modeling method is used to solve the problem that the results of the traditional finite element method are not convergent and the calculation efficiency is low.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 May 2023

John Kwaku Amoh, Kenneth Ofori-Boateng, Randolph Nsor-Ambala and Ebenezer Bugri Anarfo

This study explored the tax evasion and corruption–economic development nexus in Ghana and the moderating role of institutional quality in this relationship.

Abstract

Purpose

This study explored the tax evasion and corruption–economic development nexus in Ghana and the moderating role of institutional quality in this relationship.

Design/methodology/approach

To achieve this objective, this study employed the structural equation modelling (SEM) strategy and maximum likelihood (ML) estimation method on selected quarterised data from 1996 to 2020.

Findings

The study found that tax evasion has a positive impact on GDP per capita and urbanisation but a negative impact on the Economic Freedom of the World Index (EFWI). The study revealed that corruption has a positive relationship with GDP per capita but relates with EFWI inversely. Finally, the study found that institutional quality moderates the nexus between tax evasion and corruption and economic development.

Social implications

The findings imply that the quality of state institutions has a significant impact on the government's ability to control tax evasion and corruption in order to drive economic development.

Originality/value

One novelty of the study is the examination of the combined effects of tax evasion and corruption as exogenous variables in a single econometric model. Again, to moderate the multivariate relationships of the study, the principal component analysis (PCA) was used to create an institutional quality index. The study recommends that policymakers implement comprehensive tax evasion and corruption reduction strategies simultaneously in order to increase tax revenues for economic development and SDGs achievement.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

Article
Publication date: 14 July 2023

Shashi Prakash Dwivedi

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of…

Abstract

Purpose

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of grinding sludge (GS) waste, which is disposed into the earth. The accumulation of this waste in dump yards causes an increase in soil and air pollution levels.

Design/methodology/approach

In the current investigation, an effort was made to use this waste GS for the progress of aluminum-based composite. To maintain uniform distribution of reinforcing material, the friction stir processing technique was used.

Findings

The characterization based on the SEM image of the Al/GS composite revealed that uniform dispersal of reinforcement content can be attained in a single tool pass. Number of grains/inch was approximately 2,402. XRD of GS powder confirmed the presence of SiO2, Fe2O3, Al2O3 and CaO phases. These phases proved GS to be a better reinforcement with aluminum alloy. Tensile strength and hardness were significantly improved in comparison to the aluminum alloy. Thermal expansion and corrosion weight loss were evaluated to observe the influence of GS addition.

Originality/value

The studies proved that the use of GS as reinforcement material can help in curbing the menace of soil pollution to a large extent.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 April 2022

Zhimin Pan, Yu Yan, Yizhou Huang, Wei Jiang, Gao Cheng Ye and Hong Jun Li

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of…

Abstract

Purpose

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of artificial intelligent mobile equipment which auxiliary or even substitute human labor drive on the inner wall of the gas-insulated metal enclosed switchgear. The GIS equipment fault inspection and maintenance can be realized through the robot manipulator on the mobile platform and the camera carried on the fuselage, and it is a kind of intelligent equipment for operation. To realize the inspection and operation of the GIS equipment pipeline without blind spots, the robot is required to be able to travel on any wall inside the pipeline, especially the top of the pipeline and both right and left sides of the pipeline, which requires the flexible climbing of the GIS inspection robot. The robot device has a certain adsorption function to ensure that the robot is fully attached to the wall surface. At the same time, the robot manipulator can be used for collision-free obstacle avoidance operation planning in the narrow operation space inside the GIS equipment.

Design/methodology/approach

The above two technologies are the key that the robot completes the GIS equipment inspections. Based on this, this paper focuses on modeling and analysis of the chassis adsorption characteristics for the GIS inspection robot. At the same time, the Denavit Hartenberg (D-H) coordinate model of the robot arm system has been established, and the kinematics forward and inverse solutions of the robot manipulator system have been derived.

Findings

The reachable working space point cloud diagram of the robot manipulator in MATLAB has been obtained based on the kinematics analysis, and the operation trajectory planning of the robot manipulator using the robot toolbox has been obtained. The simulation results show that the robot manipulator system can realize the movement without collision and obstacle avoidance. The space can cover the entire GIS pipeline so as to achieve no blind area operation.

Originality/value

Finally, the GIS inspection robot physical prototype system has been developed through system integration design, and the inspection, maintenance operation experiment has been carried out in the actual GIS equipment. The entire robot system can complete the GIS equipment inspection operation soundly and improve the operation efficiency. The research in this paper has important theoretical significance and practical application value for the optimization design and practical research of the GIS inspection robot system.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Access

Year

All dates (65)

Content type

Earlycite article (65)
1 – 10 of 65